Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000000	000

Investigating IVC with Accumulation Schemes

Rasmus Kirk Jakobsen

Computer Science Aarhus

2025-02-04 - 14:21:32 UTC

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000000	000

1 Simple IVC

2 PCS based on DL

3 AS based on DL

4 AS Properties

5 IVC based on AS

6 Benchmarks & Conclusion

2/29

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
•000	000	000000	0000	0000000	000

Simple IVC

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

3/29

Computer Science Aarhus

Simple IVC 0●00	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS 0000000	Benchmarks & Conclusion 000

Motivation

IVC is designed to solve the following problem:

If a computation runs for hundreds of years and ultimately outputs 42, how can we check its correctness without re-executing the entire process?

We define the transition function F run on an initial state s_0 :

• How can we verify $s_n = F^n(s_0)$ without re-executing the computation?

4/29

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000000	000

IVC chain

We can use a SNARK to prove each computation step:

$$s_0 \xrightarrow{\mathcal{P}(s_0, \perp)} (s_1, \pi_1) \xrightarrow{\mathcal{P}(s_1, \pi_1)} \cdots \xrightarrow{\mathcal{P}(s_{n-1}, \pi_{n-1})} (s_n, \pi_n)$$

$$\mathcal{P}(s_{i-1}, \pi_{i-1}) \text{ represents:}$$

$$s_i = F(s_{i-1})$$

$$\pi_i = \text{SNARK}.\text{Prover}(R, x = \{s_0, s_i\}, w = \{s_{i-1}, \pi_{i-1}\})$$

$$R := \text{I.K. } w = \{\pi_{i-1}, s_{i-1}\} \text{ s.t.}$$

$$s_i \stackrel{?}{=} F(s_{i-1}) \land (s_{i-1} \stackrel{?}{=} s_0 \lor \mathcal{V}(R, x = \{s_0, s_i\}, \pi_{i-1}))$$

5/29

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Simple IVC 000●	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS 0000000	Benchmarks & Conclusion 000
Droof					
Prool					

 \blacksquare R gives us a series of proofs of the claims:

$$\begin{split} & \text{I.K. } w \;\; \text{s.t.} \;\; s_n \;\; = F(s_{n-1}) \; \land \; (s_{n-1} = s_0 \lor \mathcal{V}(R, x, \pi_{n-1}) = \top), \\ & \text{I.K. } w \;\; \text{s.t.} \;\; s_{n-1} = F(s_{n-2}) \; \land \; (s_{n-2} = s_0 \lor \mathcal{V}(R, x, \pi_{n-2}) = \top), \; \dots \\ & \text{I.K. } w \;\; \text{s.t.} \;\; s_1 \;\; = F(s_0) \;\; \land \; (s_0 = s_0 \;\; \lor \mathcal{V}(R, x, \pi_0) = \top) \end{split}$$

Which, if all verify means that:

SNARK.Verifier
$$(R, x, \pi_n) = \top \implies$$

 $s_n = F(s_{n-1}) \land$
SNARK.Verifier $(R, x, \pi_{n-1}) = \top \implies$
 $s_{n-1} = F(s_{n-2}) \land$
SNARK.Verifier $(R, x, \pi_{n-2}) = \top \implies \dots$
 $s_1 = F(s_0)$

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	●OO	000000	0000	0000000	000

PCS based on DL

Rasmus Kirk Jak<u>obsen</u>

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	O●O	000000	0000	0000000	000

Polynomial Commitment Scheme

- $\mathsf{PC}_{\mathsf{DL}}.\mathsf{Setup}(\lambda, D)^{\rho_0} \to \operatorname{pp}_{\mathsf{PC}}: (S, D, H, G)$
- $\mathsf{PC}_{\mathsf{DL}}.\mathsf{Commit}(p:\mathbb{F}_q^{d'}[X],d:\mathbb{N})\to\mathbb{E}(\mathbb{F}_q)$:

Creates a Pedersen commit to $p^{(\text{coeffs})}$ of degree $d' \leq d$.

 $\blacksquare \mathsf{PC}_{\mathsf{DL}}.\mathsf{Open}^{\rho_0}(p:\mathbb{F}_q^{d'}[X], C:\mathbb{E}(\mathbb{F}_q), d:\mathbb{N}, z:\mathbb{F}_q) \to \mathbf{EvalProof}:$

"I know degree $d' \leq d$ polynomial p with commit C s.t. p(z) = v"

- $\mathsf{PC}_{\mathsf{DL}}$.SUCCINCT CHECK^{ρ_0} (q : Instance) \rightarrow Result(($\mathbb{F}_q^d[X], \mathbb{E}(\mathbb{F}_q)$), \perp): Partially check π . The expensive part of the full check is deferred.
- $\mathsf{PC}_{\mathsf{DL}}.\mathsf{Check}^{\rho_0}(q:\mathbf{Instance}) \to \mathbf{Result}(\top, \bot)$:

The full check on π .

q:Instance = $(C: \mathbb{E}(\mathbb{F}_q), d: \mathbb{N}, z: \mathbb{F}_q, v: \mathbb{F}_q, \pi:$ EvalProof)

Notes on Checking Evaluation Proofs for PC_{DL}

Verifying checks:

1
$$\pi = L, R, U, c$$

2 $C_{lg(n)} \stackrel{?}{=} cU + ch(z)H' = c^{(0)}G^{(0)} + c^{(0)}z^{(0)}H'$
3 $U \stackrel{?}{=} \mathsf{CM.COMMIT}(G, h^{(\mathsf{coeffs})}) \stackrel{?}{=} \langle G, h^{(\mathsf{coeffs})} \rangle$

■ PC_{DL}.SUCCINCTCHECK either rejects or accepts and returns: ■ U: ■ Represents $G^{(0)}$. ■ May be wrong! ■ $h(X) := \prod_{i=0}^{\lg(n)-1} (1 + \xi_{\lg(n)-i}X^{2^i})$:

- Compression polynomial for $\boldsymbol{G} \to \boldsymbol{G}^{(0)}, z \to z^{(0)}$.
- Degree-d, O(lg(d)) evaluation time.

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	●00000	0000	0000000	000

AS based on DL

Rasmus Kirk Jak<u>obsen</u>

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	O●OOOO	0000	0000000	000

Overview

Generally

- AS.Setup(λ) \rightarrow ppas
- AS.Prover $(q: \mathbf{Instance}^m, acc_{i-1}: \mathbf{Option}(\mathbf{Acc})) \rightarrow \mathbf{Acc}$
- AS.Verifier(q : Instance^m, acc_{i-1} : Option(Acc), acc_i : Acc) \rightarrow Result(\top, \bot)
- AS.Decider($acc_i : \mathbf{Acc}$) $\rightarrow \mathbf{Result}(\top, \bot)$

$\mathsf{AS}_{\mathsf{DL}}$: Based on Discrete Log

- $\mathsf{AS}_{\mathsf{DL}}.\mathsf{Setup}(1^{\lambda}, D) \to \mathrm{pp}_{\mathsf{AS}}$
- AS_{DL} . $Prover(q : Instance^m) \rightarrow Result(Acc, \perp)$:
- AS_{DL} . $Verifier(q : Instance^m, acc_i : Acc) \rightarrow Result(\top, \bot)$:
- $AS_{DL}.Decider(acc_i : Acc) \rightarrow Result(\top, \bot):$
- AS_{DL}.CommonSubroutine $(q: \mathbf{Instance}^m) \to \mathbf{Result}((\mathbb{E}(\mathbb{F}_q), \mathbb{N}, \mathbb{F}_q, \mathbb{F}_q^d[X]), \bot)$

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	00●000	0000	0000000	000

Prover

 $\label{eq:algorithm} Algorithm \ AS_{\text{DL}}. PROVER$

Inputs

q: Instance^m

Output

 $\mathbf{Result}(\mathbf{Acc}, \bot)$

Require:
$$\forall d_i \in \boldsymbol{q}, \forall d_j \in \boldsymbol{q} : d_i = d_j \land d_i \leq D$$

Require: $(d_i + 1) = 2^{\kappa}$, where $k \in \mathbb{N}$

- 1: Compute the tuple $(\overline{C}, d, z, \overline{h}(X)) := \mathsf{AS}_{\mathsf{DL}}.\mathsf{COMMONS}_{\mathsf{UBROUTINE}}(q).$
- 2: Generate the evaluation proof $\pi := \mathsf{PC}_{\mathsf{DL}}.\mathsf{OPEN}(\bar{h}(X), \bar{C}, d, z).$
- 3: Finally, output the accumulator $\operatorname{acc}_i = (\overline{C}, d, z, v := \overline{h}(z), \pi)$.

Simple IVC 0000	PCS based on DL 000	AS based on DL 000●00	AS Properties 0000	IVC based on AS 0000000	Benchmarks & Conclusion 000

Verifier

Algori	thm	AS _{DL} .	Verifier
--------	-----	--------------------	----------

Inputs

 $\begin{array}{l} \boldsymbol{q}: \mathbf{Instance}^m\\ \mathrm{acc}_i: \mathbf{Acc}\\ \mathbf{Output}\\ \mathbf{Result}(\top, \bot)\\ \mathbf{Require:} \ (d+1) = 2^k, \text{ where } k \in \mathbb{N}\\ 1: \ \mathsf{Parse} \ \mathrm{acc}_i \ \mathrm{as} \ (\bar{C}_{\mathrm{acc}}, d_{\mathrm{acc}}, z_{\mathrm{acc}}, v_{\mathrm{acc}}, _)\\ 2: \ \mathsf{Compute} \ (\bar{C}, d, z, \bar{h}(X)) := \mathsf{AS}_{\mathsf{DL}}.\mathsf{COMMONSUBROUTINE}(\boldsymbol{q})\\ 3: \ \mathsf{Then} \ \mathsf{check} \ \mathsf{that} \ C_{\mathrm{acc}} \ \stackrel{?}{=} \bar{C}, d_{\mathrm{acc}} \ \stackrel{?}{=} d, z_{\mathrm{acc}} \ \stackrel{?}{=} z, \ \mathsf{and} \ v_{\mathrm{acc}} \ \stackrel{?}{=} \bar{h}(z). \end{array}$

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	0000€0	0000	0000000	000

Decider

$Algorithm \ 1 \ \mathsf{AS}_{\mathsf{DL}}.\mathsf{Decider}$

Inputs

acc_i : Acc Output Result(\top, \bot) Require: acc_i. $d \le D$ Require: (acc_i.d + 1) = 2^k, where $k \in \mathbb{N}$ 1: Check $\top \stackrel{?}{=} \mathsf{PC}_{\mathsf{DL}}.\mathsf{CHECK}(\operatorname{acc}_i)$

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	00000●	0000	0000000	000

Common Subroutine

$\label{eq:algorithm} Algorithm \ AS_{\text{DL}}. Common Subroutine$

Inputs

q: Instance^m

Output

 $\mathbf{Result}((\mathbb{E}(\mathbb{F}_q), \mathbb{N}, \mathbb{F}_q, \mathbb{F}_q^d[X]), \bot)$

Require: $(d+1) = 2^k$, where $k \in \mathbb{N}$

- 1: Parse d from q_1 .
- 2: for $q_j \in \boldsymbol{q}$ do
- 3: Parse d_j from q_j .

4: Compute
$$(h_j(X), U_j) := \mathsf{PC}_{\mathsf{DL}}.\mathsf{Succinct}\mathsf{Check}^{\rho_0}(q_j).$$

5: Check that $d_j \stackrel{?}{=} d$

6: end for

- 7: Compute the challenge $lpha:=
 ho_1(m{h},m{U})$
- 8: Linearize h_j, U_j : $\bar{h}(X) := \sum_{j=1}^m \alpha^j h_j(X)$, $\bar{C} := \sum_{j=1}^m \alpha^j U_j$
- 9: Compute: $z := \rho_1(\bar{C}, \bar{h}(X))$
- 10: Output $(\overline{C}, d, z, \overline{h}(X))$.

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000		0000000	000

AS Properties

Rasmus Kirk Jak<u>obsen</u>

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties ○●○○	IVC based on AS 0000000	Benchmarks & Conclusion 000

AS Completeness

Assuming that PC_{DL} is complete.

- AS_{DL}.VERIFIER:
 - Runs the same deterministic AS_{DL}.COMMONSUBROUTINE with the same inputs.
 - Given that AS_{DL}.PROVER is honest, AS_{DL}.VERIFIER will get the same outputs.
 - These are checked to be equal to the ones from acc_i.
 - Therefore AS_{DL}.VERIFIER accepts with probability 1.
- AS_{DL}.Decider:
 - Runs PC_{DL}.CHECK on the acc_i, representing an evaluation proof (instance).
 - The prover constructed the acc_i honestly.
 - Therefore this check will pass with probability 1.

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 00●0	IVC based on AS 0000000	Benchmarks & Conclusion 000
	dness				

- AS_{DL}.Verifier shows that $\bar{h}(X), \bar{C}$ are linear combinations of $h_j(X), U_j$'s.
- AS_{DL}.Decider shows that $\overline{C} = \mathsf{PC}_{\mathsf{DL}}.\mathsf{Commit}(\overline{h}(X), d)$, checks all U_j 's.
 - Let $\operatorname{acc}_i = (\bar{C}, d, z, v, \pi)$
 - PC_{DL}.CHECK shows that \overline{C} is a commitment to $\overline{h}'(X)$ and $\overline{h}'(z) = v$.
 - AS_{DL}.VERIFIER shows that $\bar{C} = \sum_{j=1}^{m} \alpha^{j} U_{j}$, $\bar{h}(z) = v$.
 - Since $v = \bar{h}(z) = \bar{h}'(z)$ then $\bar{h}(X) = \bar{h}'(X)$ with $1 \Pr[d/|\mathbb{F}_q|]$.
 - Define $\forall j \in [m] : B_j = \langle G, h_j^{(\text{coeffs})} \rangle$. If $\exists j \in [m] B_j \neq U_j$ then:
 - U_j is not a valid commitment to $h_j(X)$ and,

$$\sum_{j=1}^{m} \alpha^{j} B_{j} \neq \sum_{j=1}^{m} \alpha^{j} U_{j}$$

As such \overline{C} will not be a valid commitment to $\overline{h}(X)$. Unless,

• $\alpha := \rho_1(h, U)$ or $z = \rho_1(\overline{C}, \overline{h}(X))$ is constructed maliciously.

Previous accumulators are instances, as such, they will also be checked.

More formal argument in the report.

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 000●	IVC based on AS 0000000	Benchmarks & Conclusion 000
AS Efficie	ency				

Analysis

- AS_{DL}.CommonSubroutine:
 - Step 4: m calls to PC_{DL}.SUCCINCTCHECK, $\mathcal{O}(m \lg(d))$ scalar muls.
 - Step 8: $m \lg(d)$ field muls.
 - Step 8: *m* scalar muls.

Step 4 dominates with $\mathcal{O}(m \lg(d))$ scalar muls.

- AS_{DL}.PROVER:
 - Step 1: Call to AS_{DL}.COMMONSUBROUTINE, $\mathcal{O}(m \lg(d))$ scalar muls.
 - Step 2: Call to PC_{DL} . OPEN, O(d) scalar muls.
 - Step 3: Evaluation of $\bar{h}(X)$, $\mathcal{O}(m \lg(d))$ field muls.

Step 2 dominates with $\mathcal{O}(d)$ scalar muls.

- AS_{DL}.VERIFIER:
 - Step 2: Call to AS_{DL}.COMMONSUBROUTINE, $\mathcal{O}(m \lg(d))$ scalar muls.
- AS_{DL}.Decider:
 - Step 1: Call to PC_{DL} .CHECK, with $\mathcal{O}(d)$ scalar muls.

So AS_{DL} . Prover, AS_{DL} . Decider are linear and AS_{DL} . Verifier is sub-linear.

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	•000000	000

IVC based on AS

Rasmus Kirk Jak<u>obsen</u>

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS ○●○○○○○	Benchmarks & Conclusion 000
Assumin	a o Nork				

- We assume we have an underlying NARK which proof consists of only instances $\mathbf{r} \in \mathbf{D}$ as a $\mathbf{f} = [\mathbf{r}]^m$. We assume this NARK has three algorithm
 - instances $\pi \in \mathbf{Proof} = [q]^m$. We assume this NARK has three algorithms: **NARK**.PROVER $(R : \mathbf{Circuit}, x : \mathbf{PublicInputs}, w : \mathbf{Witness}) \to \mathbf{Proof}$
 - NARK.PROVER(R : Circuit, x : PublicInputs, w : witness) \rightarrow Proof
 - NARK.VERIFIER(R : Circuit, x : PublicInputs, π : Proof) \rightarrow Result(\top , \bot)
 - NARK.VERIFIERFAST(R : **Circuit**, x : **PublicInputs**, π : **Proof**) → **Result**(\top , \bot)

$$s_0 \xrightarrow{\mathcal{P}(s_0, \bot, \bot)} (s_1, \pi_1, \operatorname{acc}_1) \xrightarrow{\mathcal{P}(s_1, \pi_1, \operatorname{acc}_1)} \cdots \rightarrow (s_n, \pi_n, \operatorname{acc}_n)$$

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	00●0000	000

The Circuit Visualized

22/29

Investigating IVC with Accumulation Schemes

Rasmus Kirk Jakobsen

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS 000€000	Benchmarks & Conclusion 000
The IVC	prover				

Algorithm IVC.PROVER

Inputs

 R_{IVC} : Circuit x: PublicInputs

 $w: \mathbf{Option}(\mathbf{Witness})$

The IVC circuit as defined above. Public inputs for R_{IVC} . Private inputs for R_{IVC} .

Output

 $(S, \mathbf{Proof}, \mathbf{Acc})$

The values for the next IVC iteration.

Require:
$$x = \{s_0\}, w = \{s_{i-1}, \pi_{i-1}, \operatorname{acc}_{i-1}\} \lor w = \bot$$

1: If (base-case) Then ... Else

2: Run the accumulation prover: $acc_i = AS.PROVER(\pi_{i-1} = q, acc_{i-1}).$

3: Compute the next value: $s_i = F(s_{i-1})$.

4: Define
$$x' = x \cup \{R_{IVC}, s_i, \operatorname{acc}_i\}$$

- 5: Generate a NARK proof using R_{IVC} : $\pi_i = \text{NARK}.\text{Prover}(R_{IVC}, x', w)$.
- 6: Output $(s_i, \pi_i, \operatorname{acc}_i)$

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000●00	000

The IVC Verifier

Algorithm IVC.VERIFIER

nputs	
$R_{IVC}: \mathbf{Circuit}$	The IVC circuit.
$x: \mathbf{PublicInputs}$	Public inputs for R_{IVC} .
Dutput	
$\mathbf{Result}(op, ot)$	Returns $ op$ or $ op$.
Require: $x = \{s_0, s_i, \operatorname{acc}_i\}$	
1: Define $x' = x \cup \{R_{IVC}\}$.	

- 2: Verify that the accumulation scheme decider accepts: $\top \stackrel{?}{=} AS.DECIDER(acc_i)$.
- 3: Verify the validity of the IVC proof: $\top \stackrel{?}{=} \mathsf{NARK}.\mathsf{Verifier}(R_{IVC}, x', \pi_i).$
- 4: If the above two checks pass, then output \top , else output \perp .

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS 00000€0	Benchmarks & Conclusion 000
Why Do	es it Work?				

$$\begin{aligned} \mathsf{IVC.Verifier}(R_{IVC}, x_n &= \{s_0, s_n, \operatorname{acc}_i\}, \pi_n) &= \top \implies \\ \forall i \in [n], \forall q_j \in \pi_i = \mathbf{q} : \mathsf{PC}_{\mathsf{DL}}.\mathsf{Check}(q_j) &= \top & \land \\ F(s_{n-1}) &= s_n \land (s_{n-1} = s_0 \lor (\mathcal{V}_1 \land \mathcal{V}_2)) \implies \\ \mathsf{AS.Verifier}(\mathbf{q} = \pi_{n-1}, \operatorname{acc}_{n-1}, \operatorname{acc}_n) &= \top & \land \\ \mathsf{NARK.VerifierFast}(R_{IVC}, x_{n-1}, \pi_{n-1}) &= \top \implies \dots \\ F(s_0) &= s_1 \land (s_0 = s_0 \lor (\mathcal{V}_1 \land \mathcal{V}_2)) \implies \\ F(s_0) &= s_1 \end{aligned}$$

- I $\forall i \in [2, n]$: AS.VERIFIER $(\pi_{i-1}, \operatorname{acc}_{i-1}, \operatorname{acc}_i) = \top$, i.e, all accumulators are valid.
- 2 $\forall i \in [2, n]$: NARK.VerifierFast $(R_{IVC}, x_{i-1}, \pi_{i-1})$, i.e, all the proofs are valid.

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS	Benchmarks & Conclusion

Efficiency Analysis

Assumptions

- **NARK.** PROVER runtime scales linearly with d ($\mathcal{O}(d)$)
- **NARK.** VERIFIER runtime scales linearly with $d(\mathcal{O}(d))$
- NARK.VerifierFast runtime scales sub-linearly with d ($\mathcal{O}(\lg(d))$)
- F runtime is less than $\mathcal{O}(d)$, since $|R_F| \leq d$

Analysis

- IVC.PROVER:
 - Step 2: The cost of running AS_{DL} . PROVER, O(d).
 - Step 3: The cost of computing F, $\mathcal{O}(F(x))$.
 - Step 5: The cost of running NARK.PROVER, $\mathcal{O}(d)$.
 - Totalling $\mathcal{O}(d)$.
- IVC.VERIFIER:
 - Step 2: The cost of running AS_{DL} . DECIDER, O(d) scalar muls.
 - Step 3: The cost of running NARK.VERIFIER, $\mathcal{O}(d)$ scalar muls.

Totalling $\mathcal{O}(d)$

Although the runtime of IVC.VERIFIER is linear, it scales with d, not n.

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000000	●○○

Benchmarks & Conclusion

Rasmus Kirk Jak<u>obsen</u>

Investigating IVC with Accumulation Schemes

Computer Science Aarhus

Simple IVC 0000	PCS based on DL 000	AS based on DL 000000	AS Properties 0000	IVC based on AS 0000000	Benchmarks & Conclusion ○●○

Benchmarks

Benchmark Times for 100 Iterations

Simple IVC	PCS based on DL	AS based on DL	AS Properties	IVC based on AS	Benchmarks & Conclusion
0000	000	000000	0000	0000000	○○●

Conclusion

The project:

- Gained a deeper understanding of advanced cryptographic theory.
- Learned to better carry theory into practice.
- Implementing full IVC is *hard*.
- Benchmarks looks good, excited to see degree bound increase.
- Future work...