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Simple IVC
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Motivation

IVC is designed to solve the following problem:

If a computation runs for hundreds of years and ultimately outputs
42, how can we check its correctness without re-executing the entire
process?

We define the transition function F run on an initial state s0:

s0 s1 . . . sn

F (s0) F (s1) F (sn−1)

How can we verify sn = F n(s0) without re-executing the computation?
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IVC chain

We can use a SNARK to prove each computation step:

s0 (s1, π1) . . . (sn, πn)
P(s0, ⊥) P(s1, π1) P(sn−1, πn−1)

P(si−1, πi−1) represents:

si = F (si−1)
πi = SNARK.PROVER(R, x = {s0, si}, w = {si−1, πi−1})
R := I.K. w = {πi−1, si−1} s.t.

si
?= F (si−1) ∧ (si−1

?= s0 ∨ V(R, x = {s0, si}, πi−1))
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Proof

R gives us a series of proofs of the claims:

I.K. w s.t. sn = F (sn−1) ∧ (sn−1 = s0 ∨ V(R, x, πn−1) = ⊤),
I.K. w s.t. sn−1 = F (sn−2) ∧ (sn−2 = s0 ∨ V(R, x, πn−2) = ⊤), . . .

I.K. w s.t. s1 = F (s0) ∧ (s0 = s0 ∨ V(R, x, π0) = ⊤)

Which, if all verify means that:

SNARK.VERIFIER(R, x, πn) = ⊤ =⇒
sn = F (sn−1) ∧
SNARK.VERIFIER(R, x, πn−1) = ⊤ =⇒
sn−1 = F (sn−2) ∧
SNARK.VERIFIER(R, x, πn−2) = ⊤ =⇒ . . .

s1 = F (s0)
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PCS based on DL
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Polynomial Commitment Scheme

PCDL.SETUP(λ, D)ρ0 → ppPC: (S, D, H, G)

PCDL.COMMIT(p : Fd′
q [X], d : N) → E(Fq):

Creates a Pedersen commit to p(coeffs) of degree d′ ≤ d.

PCDL.OPENρ0 (p : Fd′
q [X], C : E(Fq), d : N, z : Fq) → EvalProof :

“I know degree d′ ≤ d polynomial p with commit C s.t. p(z) = v”

PCDL.SUCCINCTCHECKρ0 (q : Instance) → Result((Fd
q [X],E(Fq)), ⊥):

Partially check π. The expensive part of the full check is deferred.

PCDL.CHECKρ0 (q : Instance) → Result(⊤, ⊥):

The full check on π.

q : Instance = (C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)
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Notes on Checking Evaluation Proofs for PCDL

Verifying checks:

1 π = L, R, U, c

2 Clg(n)
?= cU + ch(z)H ′ = c(0)G(0) + c(0)z(0)H ′

3 U
?= CM.COMMIT(G, h(coeffs)) ?= ⟨G, h(coeffs)⟩

PCDL.SUCCINCTCHECK either rejects or accepts and returns:
U :

Represents G(0).
May be wrong!

h(X) :=
∏lg(n)−1

i=0 (1 + ξlg(n)−iX
2i ):

Compression polynomial for G → G(0), z → z(0).
Degree-d, O(lg(d)) evaluation time.
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AS based on DL
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Overview

Generally
AS.SETUP(λ) → ppAS
AS.PROVER(q : Instancem, acci−1 : Option(Acc)) → Acc
AS.VERIFIER(q : Instancem, acci−1 : Option(Acc), acci : Acc) →
Result(⊤, ⊥)
AS.DECIDER(acci : Acc) → Result(⊤, ⊥)

ASDL: Based on Discrete Log
ASDL.SETUP(1λ, D) → ppAS
ASDL.PROVER(q : Instancem) → Result(Acc, ⊥):
ASDL.VERIFIER(q : Instancem, acci : Acc) → Result(⊤, ⊥):
ASDL.DECIDER(acci : Acc) → Result(⊤, ⊥):
ASDL.COMMONSUBROUTINE(q : Instancem) →
Result((E(Fq),N,Fq,Fd

q [X]), ⊥)
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Prover

Algorithm ASDL.PROVER

Inputs
q : Instancem

Output
Result(Acc, ⊥)

Require: ∀di ∈ q, ∀dj ∈ q : di = dj ∧ di ≤ D
Require: (di + 1) = 2k, where k ∈ N

1: Compute the tuple (C̄, d, z, h̄(X)) := ASDL.COMMONSUBROUTINE(q).
2: Generate the evaluation proof π := PCDL.OPEN(h̄(X), C̄, d, z).
3: Finally, output the accumulator acci = (C̄, d, z, v := h̄(z), π).
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Verifier

Algorithm ASDL.VERIFIER

Inputs
q : Instancem

acci : Acc
Output

Result(⊤, ⊥)
Require: (d + 1) = 2k, where k ∈ N

1: Parse acci as (C̄acc, dacc, zacc, vacc, _)
2: Compute (C̄, d, z, h̄(X)) := ASDL.COMMONSUBROUTINE(q)
3: Then check that Cacc

?= C̄, dacc
?= d, zacc

?= z, and vacc
?= h̄(z).
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Decider

Algorithm 1 ASDL.DECIDER

Inputs
acci : Acc

Output
Result(⊤, ⊥)

Require: acci.d ≤ D
Require: (acci.d + 1) = 2k, where k ∈ N

1: Check ⊤ ?= PCDL.CHECK(acci)
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Common Subroutine

Algorithm ASDL.COMMONSUBROUTINE

Inputs
q : Instancem

Output
Result((E(Fq),N,Fq,Fd

q [X]), ⊥)
Require: (d + 1) = 2k, where k ∈ N

1: Parse d from q1.
2: for qj ∈ q do
3: Parse dj from qj .
4: Compute (hj(X), Uj) := PCDL.SUCCINCTCHECKρ0 (qj).
5: Check that dj

?= d
6: end for
7: Compute the challenge α := ρ1(h, U)
8: Linearize hj , Uj : h̄(X) :=

∑m

j=1 αjhj(X), C̄ :=
∑m

j=1 αjUj

9: Compute: z := ρ1(C̄, h̄(X))
10: Output (C̄, d, z, h̄(X)).
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AS Properties
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AS Completeness

Assuming that PCDL is complete.

ASDL.VERIFIER:
Runs the same deterministic ASDL.COMMONSUBROUTINE with the same inputs.
Given that ASDL.PROVER is honest, ASDL.VERIFIER will get the same outputs.
These are checked to be equal to the ones from acci.
Therefore ASDL.VERIFIER accepts with probability 1.

ASDL.DECIDER:
Runs PCDL.CHECK on the acci, representing an evaluation proof (instance).
The prover constructed the acci honestly.
Therefore this check will pass with probability 1.
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AS Soundness

ASDL.VERIFIER shows that h̄(X), C̄ are linear combinations of hj(X), Uj ’s.
ASDL.DECIDER shows that C̄ = PCDL.COMMIT(h̄(X), d), checks all Uj ’s.

Let acci = (C̄, d, z, v, π)
PCDL.CHECK shows that C̄ is a commitment to h̄′(X) and h̄′(z) = v.
ASDL.VERIFIER shows that C̄ =

∑m

j=1 αjUj , h̄(z) = v.
Since v = h̄(z) = h̄′(z) then h̄(X) = h̄′(X) with 1 − Pr[d/|Fq |].
Define ∀j ∈ [m] : Bj = ⟨G, hj

(coeffs)⟩. If ∃j ∈ [m] Bj ̸= Uj then:
Uj is not a valid commitment to hj(X) and,∑m

j=1
αjBj ̸=

∑m

j=1
αjUj

As such C̄ will not be a valid commitment to h̄(X). Unless,
α := ρ1(h, U) or z = ρ1(C̄, h̄(X)) is constructed maliciously.

Previous accumulators are instances, as such, they will also be checked.
More formal argument in the report.
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AS Efficiency

Analysis
ASDL.COMMONSUBROUTINE:

Step 4: m calls to PCDL.SUCCINCTCHECK, O(m lg(d)) scalar muls.
Step 8: m lg(d) field muls.
Step 8: m scalar muls.

Step 4 dominates with O(m lg(d)) scalar muls.
ASDL.PROVER:

Step 1: Call to ASDL.COMMONSUBROUTINE, O(m lg(d)) scalar muls.
Step 2: Call to PCDL.OPEN, O(d) scalar muls.
Step 3: Evaluation of h̄(X), O(m lg(d)) field muls.

Step 2 dominates with O(d) scalar muls.
ASDL.VERIFIER:

Step 2: Call to ASDL.COMMONSUBROUTINE, O(m lg(d)) scalar muls.
ASDL.DECIDER:

Step 1: Call to PCDL.CHECK, with O(d) scalar muls.

So ASDL.PROVER, ASDL.DECIDER are linear and ASDL.VERIFIER is sub-linear.
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IVC based on AS
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Assuming a Nark

We assume we have an underlying NARK which proof consists of only
instances π ∈ Proof = [q]m. We assume this NARK has three algorithms:

NARK.PROVER(R : Circuit, x : PublicInputs, w : Witness) → Proof
NARK.VERIFIER(R : Circuit, x : PublicInputs, π : Proof) →
Result(⊤, ⊥)
NARK.VERIFIERFAST(R : Circuit, x : PublicInputs, π : Proof) →
Result(⊤, ⊥)

s0 (s1, π1, acc1) . . . (sn, πn, accn)
P(s0, ⊥, ⊥) P(s1, π1, acc1)
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The Circuit Visualized

x = {RIV C , s0, si, acci}
w = {si−1, πi−1 = q, acci−1}

q acci−1 acciRIV C xi−1 πi−1si si−1 s0

NARK.VERIFIERFAST AS.VERIFIER

∧si−1
?= s0

∨F (si−1) ?= si

∧
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The IVC prover

Algorithm IVC.PROVER

Inputs
RIV C : Circuit The IVC circuit as defined above.
x : PublicInputs Public inputs for RIV C .
w : Option(Witness) Private inputs for RIV C .

Output
(S, Proof , Acc) The values for the next IVC iteration.

Require: x = {s0}, w = {si−1, πi−1, acci−1} ∨ w = ⊥
1: If (base-case) Then . . . Else
2: Run the accumulation prover: acci = AS.PROVER(πi−1 = q, acci−1).
3: Compute the next value: si = F (si−1).
4: Define x′ = x ∪ {RIV C , si, acci}.
5: Generate a NARK proof using RIV C : πi = NARK.PROVER(RIV C , x′, w).
6: Output (si, πi, acci)
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The IVC Verifier

Algorithm IVC.VERIFIER

Inputs
RIV C : Circuit The IVC circuit.
x : PublicInputs Public inputs for RIV C .

Output
Result(⊤, ⊥) Returns ⊤ or ⊥.

Require: x = {s0, si, acci}
1: Define x′ = x ∪ {RIV C}.
2: Verify that the accumulation scheme decider accepts: ⊤ ?= AS.DECIDER(acci).
3: Verify the validity of the IVC proof: ⊤ ?= NARK.VERIFIER(RIV C , x′, πi).
4: If the above two checks pass, then output ⊤, else output ⊥.
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Why Does it Work?

IVC.VERIFIER(RIV C , xn = {s0, sn, acci}, πn) = ⊤ =⇒
∀i ∈ [n], ∀qj ∈ πi = q : PCDL.CHECK(qj) = ⊤ ∧
F (sn−1) = sn ∧ (sn−1 = s0 ∨ (V1 ∧ V2)) =⇒
AS.VERIFIER(q = πn−1, accn−1, accn) = ⊤ ∧
NARK.VERIFIERFAST(RIV C , xn−1, πn−1) = ⊤ =⇒ . . .

F (s0) = s1 ∧ (s0 = s0 ∨ (V1 ∧ V2)) =⇒
F (s0) = s1 =⇒

1 ∀i ∈ [2, n] : AS.VERIFIER(πi−1, acci−1, acci) = ⊤, i.e, all accumulators are
valid.

2 ∀i ∈ [2, n] : NARK.VERIFIERFAST(RIV C , xi−1, πi−1), i.e, all the proofs are
valid.
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Efficiency Analysis

Assumptions
NARK.PROVER runtime scales linearly with d (O(d))
NARK.VERIFIER runtime scales linearly with d (O(d))
NARK.VERIFIERFAST runtime scales sub-linearly with d (O(lg(d)))
F runtime is less than O(d), since |RF | ⪅ d

Analysis
IVC.PROVER:

Step 2: The cost of running ASDL.PROVER, O(d).
Step 3: The cost of computing F , O(F (x)).
Step 5: The cost of running NARK.PROVER, O(d).

Totalling O(d).
IVC.VERIFIER:

Step 2: The cost of running ASDL.DECIDER, O(d) scalar muls.
Step 3: The cost of running NARK.VERIFIER, O(d) scalar muls.

Totalling O(d)

Although the runtime of IVC.VERIFIER is linear, it scales with d, not n.
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Benchmarks & Conclusion
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Benchmarks
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Conclusion

The project:
Gained a deeper understanding of advanced cryptographic theory.
Learned to better carry theory into practice.
Implementing full IVC is hard.
Benchmarks looks good, excited to see degree bound increase.
Future work. . .
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