Investigating IVC with Accumulation Schemes
Rasmus Kirk Jakobsen

Computer Science Aarhus

2025-02-04 - 14:21:32 UTC

1/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IV h Accumulation Schemes

Simple IVC

PCS based on DL

AS based on DL

AS Properties

IVC based on AS

@ Benchmarks & Conclusion

2/29

Rasmus Kirk Jakobsen Computer Science Aarhus

h Accumulation Schemes

Simple IVC
@000

Simple IVC

3/29

Rasmus Kirk Jakobs: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

Simple IVC
[e] lele}

Motivation

IVC is designed to solve the following problem:

If a computation runs for hundreds of years and ultimately outputs

42, how can we check its correctness without re-executing the entire
process?

We define the transition function F' run on an initial state sq:

F(s0) F(s1) F(sn-1)
S0 > 51 > .- > Sn

m How can we verify s, = F"(so) without re-executing the computation?

4/29

Computer Science Aarhus

Rasmus Kirk Jakobsen

Investigating IVC with Accumulation Schemes

Simple IVC
[e]e] e}

IVC chain

We can use a SNARK to prove each computation step:

P(so,-L) P(s1,7m1) P(Sn—1,Tn—1)

S0 (s1,m1) b > (Sny)

\

P(si—1,mi—1) represents:

u S; = F(Si71)
m T, = SNARK.PROVER(R,:E = {so,si},w = {S¢71,7Ti71})
m R:=1K w= {7(1'_1,81'_1} s.t.

m S; ; F(Si—l) AN (Si—l ; S0 \/V(R7$ = {50737.'}77‘—1'—1))

5/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

Simple IVC
[e]e]e]]

Proof

m R gives us a series of proofs of the claims:

ILK.w st sp = F(sn-1) A (Sn—1 =80 VV(R,z,mh-1)=T),
ILK.w st sp—1 = F(sn—2) A (Sn—2 =250V V(R,x,mn—2)=T), ...
IK.w st. s1 =F(so0) A (so=s0 VV(R,z,m)=T)

m Which, if all verify means that:

SNARK.VerFIER(R, z, 7)) = T —>

Sn = F(sn-1) A
SNARK.VERFIER(R, 2, Tp—1) = T =
Sn—1 = F(sn—2) A

SNARK.VERIFIER(R, &, Tp—2) = T = ...
s1 = F(s0)

6/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

PCS based on DL
@00

PCS based on DL

7/29

Rasmus Kirk Jakob: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

PCS based on DL
oeo

Polynomial Commitment Scheme

m PCpL.SeTup(\, D) — pppc: (S, D, H,G)

m PCp.Commit(p : IFZ, [X],d: N) — E(F,):
Creates a Pedersen commit to p(©*™) of degree d’ < d.

m PCpL.OPEn (p : Fg' [X],C : E(Fy),d: N,z : F;) — EvalProof:
“I know degree d’ < d polynomial p with commit C' s.t. p(z) =v"

m PCpy.SuccineTChEck? (g : Instance) — Result((F[X],E(F,)), L):
Partially check m. The expensive part of the full check is deferred.

m PCpL.CHeck” (q : Instance) — Result(T, L):

The full check on .

q : Instance = (C : E(F,),d : N,z : Fy,v : Fg, 7 : EvalProof)

8/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

PCS based on DL
ooe

Notes on Checking Evaluation Proofs for PCpp

Verifying checks:

=L, R U,c
Clg(n) LU+ ch(z)H' = OGO® + @O q’
= CM.CommiT(G, h(°°effs)) L (G, h(°°5ffs)>

m PCp..SuccineTCHECK either rejects or accepts and returns:
m U:
m Represents GO,
m May be wrongI

lg(n)— 2%y,

L] h(X) = H ¢ (1 + glg(n) iX)
n Compre55|on polynomial for G — G(O)7 z— 20,

m Degree-d, O(lg(d)) evaluation time.

9/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
®00000

AS based on DL

10/29

Rasmus Kirk Jakob: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
O@0000

Overview

Generally

m AS.SETUP(A) — DPPag

m AS.Prover(q : Instance™, acc;—1 : Option(Acc)) — Acc

m AS.VeriFER(q : Instance™, acc;—1 : Option(Acc), acc; : Acc) —
Result(T, 1)

m AS.Deciber(acc; : Acc) — Result(T, L)

ASp,: Based on Discrete Log

m ASpL.SeTur(1%, D) — Ppas

m ASp,.Prover(g : Instance™) — Result(Acc, L):

m ASp, .VEriFiER(q : Instance™, acc; : Acc) — Result(T, L):

m ASpL.Deciper(acc; : Acc) — Result(T, L):

m ASp; .CommonSuBROUTINE(q : Instance™) —
Result((E(F,),N,F,, F4[X]), L)

11/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
[e]e] le]e]e]

Prover

Algorithm ASp,.Prover
Inputs
q : Instance™
Output
Result(Acc, 1)
Require: Vd; € q,Vd; € q:di =d; Ndi < D
Require: (d; + 1) = 2 where k € N
1: Compute the tuple (C,d, z, h(X)) := ASpL.CoMMONSUBROUTINE(q).
2: Generate the evaluation proof 7 := PCp_.Open(h(X), C, d, 2).
3. Finally, output the accumulator acc; = (C, d, z, v := h(z), 7).

12/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
[e]e]e] le]e]

Verifier

Algorithm ASp| .VERIFIER

Inputs
q : Instance™
acc; : Acc
Output

Result(T, 1)
Require: (d + 1) = 2", where k € N
1: Parse acc; as (Cace, dace, Zace Vace,)
2: Compute (C,d, z, h(X)) := ASpL.CoMMONSUBROUTINE(q)

2

3: Then check that Chcc £ C, dace £ d, Zacc < 2z, and vacc = E(Z)

13/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
[e]e]e]e] Jo]

Decider

Algorithm 1 ASp, .Deciper

Inputs
acc; : Acc
Output
Result(T, 1)

Require: acc;.d < D
Require: (acc;.d + 1) = 2, where k € N
1. Check T = PCp.CHEck(acc;)

14/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS based on DL
O0000e

Common Subroutine

Algorithm ASp_.CoMMONSUBROUTINE

Inputs
q : Instance™
Output
Result((E(F,),N,F,, F¢[X]), 1)
Require: (d+ 1) = 2¥, where k € N
1: Parse d from q;.
. for ¢; € g do
Parse d; from g;.
Compute (h;(X),U;) := PCp.SuccineTCHECK? (g;).

2

3

4

5. Check that d; = d

6: end for

7: Compute the challenge Q= pl(h7 U) ,

8 Linearize h;, Uj: h(X) ="), C=3"" U
9: Compute: z := p1(C, h()

10: Output (C,d, z, h(X)).

15/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS Properties

@000

AS Properties

16/29

Rasmus Kirk Jakob: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS Properties
[e] Te]e]

AS Completeness

Assuming that PCp. is complete.

m ASp .VERIFIER:
m Runs the same deterministic ASp_.COMMONSUBROUTINE with the same inputs.
m Given that ASp(.PROVER is honest, ASp_.VERIFIER will get the same outputs.
m These are checked to be equal to the ones from acc;.
m Therefore ASp| .VERIFIER accepts with probability 1.

m ASp; .DEcCIDER:
m Runs PCp| .CHECK on the acc;, representing an evaluation proof (instance).
m The prover constructed the acc; honestly.
m Therefore this check will pass with probability 1.

17/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC Accumulation Schemes

AS Properties
[e]e] o]

AS Soundness

m ASpL.VERIFIER shows that h(X), C' are linear combinations of h;(X),U;'s.
m ASp,.Deciper shows that C' = PCpi.CommiT(h(X), d), checks all Uj's.
m Let acc; = (C,d, z,v,7)
m PCpy.CHECK shows that C' is a commitment to h/(X) and h/(z) = v.
m ASp.VERIFIER shows that C' = Z;’;l alUj, h(z) = v.
Since v = h(z) = h/(2) then h(X) = h/(X) with 1 — Pr[d/|F,]].
Define Vj € [m] : B; = (G, h; (™) If 3j € [m] B; # U; then:
m Uj is not a valid commitment to h;(X) and,
D DAL 3 et
As such C will not be a valid commitment to A(X). Unless,
m a:=pi(h,U) or z=p1(C, h(X)) is constructed maliciously.
m Previous accumulators are instances, as such, they will also be checked.
m More formal argument in the report.

18/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

AS Properties
[e]e]e])

AS Efficiency

Analysis

m ASpL.COoMMONSUBROUTINE:
m Step 4: m calls to PCp.SuccINCTCHECK, O(m1g(d)) scalar muls.
m Step 8: mlg(d) field muls.
m Step 8: m scalar muls.
Step 4 dominates with O(m1g(d)) scalar muls.
m ASpL.PROVER:
m Step 1: Call to ASp,.COMMONSUBROUTINE, O(mlg(d)) scalar muls.
m Step 2: Call to PCp.OPEN, O(d) scalar muls.
m Step 3: Evaluation of h(X), O(mlg(d)) field muls.
Step 2 dominates with O(d) scalar muls.
m ASp..VERIFIER:
m Step 2: Call to ASp|.COMMONSUBROUTINE, O(mlg(d)) scalar muls.
m ASpy.DECIDER:
m Step 1: Call to PCp,.CHECK, with O(d) scalar muls.

So ASp..Prover, ASp..Deciber are linear and ASp| .VERIFIER is sub-linear.

19/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS
®000000

IVC based on AS

20/29

Rasmus Kirk Jakob: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS
0O@00000

Assuming a Nark

m We assume we have an underlying NARK which proof consists of only
instances m € Proof = [g]™. We assume this NARK has three algorithms:
m NARK.PROVER(R : Circuit, z : PublicInputs, w : Witness) — Proof
m NARK.VERIFIER(R : Circuit, z : PublicInputs, 7 : Proof) —

Result(T, 1)
m NARK.VERIFIERFAST(R : Circuit, z : PublicInputs, 7 : Proof) —

Result(T, 1)

P(SOvJ—aJ—) P(S1,ﬂ'1,aCC1)
(s1,m1,acc) ———> -+« —> (Sp, Tn,aCCy)

Y

S0

21/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS

[e]e] le]ele]e)

The Circuit Visualized

m x = {Rrvc, So, Si,acc; }
W= {81_1,7'(1'_1 = q,acci_1}

’ NARK. VERIFIERFAST

on Schemes

AS VERIFIER

Computer

RN

22/29

IVC based on AS
O00@000

The IVC prover

Algorithm IVC.Prover

Inputs
Rrvc : Circuit The IVC circuit as defined above.
z : PublicInputs Public inputs for Rrvc.
w : Option(Witness) Private inputs for Rrvc.
Output
(S,Proof, Acc) The values for the next IVC iteration.

Require: = = {so}, w = {si—1,mi—1,acc;i_1}Vw =1

1:

SN N

If (base-case) Then ... Else

Run the accumulation prover: acc; = AS.PROVER(T;—1 = q,acci—1).
Compute the next value: s; = F(s;-1).

Define ' = z U {R1vc, Si,acc; }.

Generate a NARK proof using Rrvc: m = NARK.Prover(Rrve, o', w).
Output (s;, s, acc;)

23/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS
0O000e00

The IVC Verifier

Algorithm IVC.VERIFIER

Inputs

Rrve : Circuit The IVC circuit.

z : PublicInputs Public inputs for Rrvc.
Output

Result(T, 1) Returns T or L.

Require: = = {so, s;,acc; }
1. Define ' =z U{Rivc}.
2: Verify that the accumulation scheme decider accepts: T < AS.Deciber(acc;).

3: Verify the validity of the IVC proof: T Z NARK.VerFier(Rrve, o', m;).
4: If the above two checks pass, then output T, else output L.

24/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS
[e]e]ee]e] o)

Why Does it Work?

IVC.VerIFIER(R1v e, Tn = {S0, Sn,acci}, mn) = T
Vi € [n],Vq; € mi = q : PCpL.CHECk(q;) = T
F(sn—1) = $n A (Sn—1 = s0 V (V1 A V2))
AS.VERIFIER(q@ = Tp—1,aCCh—_1,aCCpn) = T
NARK.VeriFIERFAST(Rrv e, Tn—1,Tn-1) = |
F(so) =s1 A (so =50V (Vi AV2))

F(s0) = s1

Ly

Vi € [2,n] : AS.VERIFIER(T;—1, acc;—1,acc;) = T, i.e, all accumulators are
valid.

Vi € [2,n] : NARK.VERIFIERFAST(R1v e, Ti—1,Ti—1), i.e, all the proofs are
valid.

25/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

IVC based on AS
000000

Efficiency Analysis

Assumptions

NARK.Prover runtime scales linearly with d (O(d))
NARK.VERIFIER runtime scales linearly with d (O(d))
NARK.VEeriFIERFAST runtime scales sub-linearly with d (O(lg(d)))
F runtime is less than O(d), since |Rr| < d

Analysis

m |VC.PROVER:
m Step 2: The cost of running ASp .PROVER, O(d).
m Step 3: The cost of computing F', O(F(z)).
m Step 5: The cost of running NARK.PROVER, O(d).

Totalling O(d).

m |VC.VERIFIER:
m Step 2: The cost of running ASp, .DECIDER, O(d) scalar muls.
m Step 3: The cost of running NARK.VERIFIER, O(d) scalar muls.

Totalling O(d)

Although the runtime of IVC.VERIFIER is linear, it scales with d, not n.
26/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IVC with Accumulation Schemes

Benchmarks & Conclusion
@00

Benchmarks & Conclusion

27/29

Rasmus Kirk Jakob: Computer Science Aarhus

Investigating IVC with Accumulation Schemes

Benchmarks & Conclusion
oeo

Benchmarks

Benchmark Times for 100 Iterations

T T T T T T
15 || —*— PCpr.CHeck |
—m— ASp_.VERIFIER

10} =
)
[}
E
'_

5 | —

0 -]

! ! ! ! ! !
512 1024 2048 4096 8196 16384
The maximum degree bound d, plus 1

28/29

Rasmus Kirk Jakobsen Computer Science Aarhus

Investigating IV h Accumulation Schemes

Benchmarks & Conclusion
ooe

Conclusion

The project:

Gained a deeper understanding of advanced cryptographic theory.
Learned to better carry theory into practice.

Implementing full IVC is hard.

Benchmarks looks good, excited to see degree bound increase.
Future work. . .

29/29

Rasmus Kirk Jakobsen Computer Science Aarhus

h Accumulation Schemes

	Simple IVC
	PCS based on DL
	\AS based on DL
	\AS Properties
	IVC based on \AS
	Benchmarks & Conclusion

