
Investigating IVC with Accumulation Schemes∗

Rasmus Kirk Jakobsen - 201907084

2025-01-30 - 18:56:04 UTC

Contents
Introduction 2

Prerequisites . 2
Background and Motivation . 2

Proof Systems . 2
Incrementally Verifiable Computation . 4
Polynomial Commitment Schemes . 5
Accumulation Schemes . 7
IVC from Accumulation Schemes . 8

The Implementation . 10

PCDL: The Polynomial Commitment Scheme 12
Outline . 12

PCDL.COMMIT . 12
PCDL.OPEN . 13
PCDL.SUCCINCTCHECK . 14
PCDL.CHECK . 14

Completeness . 15
Knowledge Soundness . 16
Efficiency . 17

ASDL: The Accumulation Scheme 18
Outline . 18

ASDL.COMMONSUBROUTINE . 19
ASDL.PROVER . 19
ASDL.VERIFIER . 20
ASDL.DECIDER . 20

Completeness . 22
Soundness . 22
Efficiency . 26

Benchmarks 26

Appendix 29
Notation . 29
Raw Benchmarking Data . 29
CM: Pedersen Commitment . 30

References 31
∗I would like to express my gratitude to Jesper Buus Nielsen and Hamidreza Khoshakhlagh for their invaluable help in answering

many of my questions.

1

Introduction
Incrementally Verifiable Computation (IVC) has seen increased practical usage, notably by the Mina[2025] blockchain
to achieve a succinct blockchain. This is enabled by increasingly efficient recursive proof systems, one of the most
used in practice is based on [Bowe et al. 2019], which includes Halo2 by the Electric Coin Company (to be used in
Zcash) and Kimchi developed and used by Mina. Both can be broken down into the following main components:

• Plonk: A general-purpose, potentially zero-knowledge, a SNARK.
• PCDL: A Polynomial Commitment Scheme in the Discrete Log setting.
• ASDL: An Accumulation Scheme in the Discrete Log setting.
• Pasta: A cycle of elliptic curves, Pallas and Vesta, collectively known as Pasta.

This project is focused on the components of PCDL and ASDL from the 2020 paper “Proof-Carrying Data from
Accumulation Schemes” [Bünz et al. 2020]. The project examines the theoretical aspects of the scheme described in
the paper, and then implements this theory in practice with a corresponding Rust implementation. Both the report
and the implementation can be found in the project’s repository[Jakobsen 2025].

Prerequisites
Basic knowledge of elliptic curves, groups and interactive arguments is assumed in the following text. Basic familiarity
with SNARKs is also assumed. The polynomial commitment scheme implemented heavily relies on the Inner Product
Proof from the Bulletproofs protocol. If needed, refer to the following resources:

• Section 3 in the original Bulletproofs[Bünz et al. 2017] paper.
• From Zero (Knowledge) to Bulletproofs writeup[Gibson 2022].
• Rust Dalek Bulletproofs implementation notes[Valence et al. 2023].
• Section 4.1 of my bachelors thesis[Jakobsen and Larsen 2022].

Background and Motivation
The following subsections introduce the concept of Incrementally Verifiable Computation (IVC) along with some
background concepts. These concepts lead to the introduction of accumulation schemes and polynomial commitment
schemes, the main focus of this paper. Accumulation schemes, in particular, will be demonstrated as a means to
create more flexible IVC constructions compared to previous approaches, allowing IVC that does not depend on a
trusted setup.

As such, these subsections aim to provide an overview of the evolving field of IVC, the succinct proof systems that
lead to its construction, and the role of accumulation schemes as an important cryptographic primitive with practical
applications.

Proof Systems

An Interactive Proof System consists of two Interactive Turing Machines: a computationally unbounded Prover, P,
and a polynomial-time bounded Verifier, V. The Prover tries to convince the Verifier of a statement X ∈ L, with
language L in NP. The following properties must be true:

• Completeness: ∀P ∈ ITM, X ∈ L =⇒ Pr[Vout = ⊥] ≤ ϵ(X)

For all honest provers, P, where X is true, the probability that the verifier remains unconvinced is negligible
in the length of X.

• Soundness: ∀P∗ ∈ ITM, X /∈ L =⇒ Pr[Vout = ⊤] ≤ ϵ(X)

For all provers, honest or otherwise, P∗, that try to convince the verifier of a claim, X, that is not true, the
probability that the verifier will be convinced is negligible in the length of X.

An Interactive Argument is very similar, but the honest and malicious prover are now polynomially bounded and
receives a Private Auxiliary Input, w, not known by V . This is such that V don’t just compute the answer themselves.
Definitions follow:

• Completeness: ∀P(w) ∈ PPT, X ∈ L =⇒ Pr[Vout = ⊥] ≤ ϵ(X)
• Soundness: ∀P∗ ∈ PPT, X /∈ L =⇒ Pr[Vout = ⊤] ≤ ϵ(X)

2

Proofs of knowledge are another type of Proof System, here the prover claims to know a witness, w, for a statement
X. Let X ∈ L and W (X) be the set of witnesses for X that should be accepted in the proof. This allows us to
define the following relation: R = {(X, w) : X ∈ L, w ∈W (X)}

A proof of knowledge for relation R is a two party protocol (P,V) with the following two properties:

• Knowledge Completeness: Pr[P(w) ⇐⇒ Vout = ⊤] = 1, i.e. as in Interactive Proof Systems, after an
interaction between the prover and verifier the verifier should be convinced with certainty.

• Knowledge Soundness: Loosely speaking, Knowledge Soundness requires the existence of an efficient
extractor E that, when given a possibly malicious prover P∗ as input, can extract a valid witness with
probability at least as high as the probability that P∗ convinces the verifier V.

The above proof systems may be zero-knowledge, which in loose terms means that anyone looking at the transcript,
that is the interaction between prover and verifier, will not be able to tell the difference between a real transcript
and one that is simulated. This ensures that an adversary gains no new information beyond what they could have
computed on their own. We now define the property more formally:

• Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼C (P,V∗)

V∗ denotes a verifier, honest or otherwise, δ represents information that V∗ may have from previous executions of
the protocol and (P,V∗) denotes the transcript between the honest prover and (possibly) malicious verifier. There
are three kinds of zero-knowledge:

• Perfect Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼P (P,V∗), the transcripts SV∗(X) and (P,V∗) are
perfectly indistinguishable.

• Statistical Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼S (P,V∗), the transcripts SV∗(X) and (P,V∗)
are statistically indistinguishable.

• Computational Zero-knowledge: ∀V∗(δ).∃SV∗(X) ∈ PPT.SV∗ ∼C (P,V∗), the transcripts SV∗(X) and
(P,V∗) are computationally indistinguishable, i.e. no polynomially bounded adversary A can distinguish them.

Fiat-Shamir Heuristic The Fiat-Shamir heuristic turns a public-coin (an interactive protocol where the verifier
only sends uniformly sampled challenge values) interactive proof into a non-interactive proof, by replacing all
uniformly random values sent from the verifier to the prover with calls to a non-interactive random oracle. In
practice, a cryptographic hash function, ρ, is used. Composing proof systems will sometimes require domain-
separation, whereby random oracles used by one proof system cannot be accessed by another proof system. This
is the case for the zero-finding game that will be used in the soundness discussions of implemented accumulation
scheme ASDL. In practice one can have a domain specifier, for example 0, 1, prepended to each message that is
hashed using ρ:

ρ0(m) = ρ(0 ++ m), ρ1(m) = ρ(1 ++ m)

SNARKS Succinct Non-interactive ARguments of Knowledge - have seen increased usage due to their application
in blockchains and cryptocurrencies. They also typically function as general-purpose proof schemes. This means
that, given any solution to an NP-problem, the SNARK prover will produce a proof that they know the solution to
said NP-problem. Most SNARKs also allow for zero-knowledge arguments, making them zk-SNARKs.

More concretely, imagine that Alice has today’s Sudoku problem X ∈ NP: She claims to have a solution to this
problem, her witness, w, and wants to convince Bob without having to reveal the entire solution. She could then use
a SNARK to generate a proof for Bob. To do this she must first encode the Sudoku verifier as a circuit RX , then let
x represent public inputs to the circuit, such as today’s Sudoku values/positions, etc, and then give the SNARK
prover the public inputs and her witness, SNARK.PROVER(RX , x, w) = π. Finally she sends this proof, π, to Bob
along with the public Sudoku verifying circuit, RX , and he can check the proof and be convinced using the SNARK
verifier (SNARK.VERIFIER(RX , x, π)).

Importantly, the ‘succinct’ property means that the proof size and verification time must be sub-linear. This allows
SNARKs to be directly used for Incrementally Verifiable Computation.

Trusted and Untrusted Setups Many SNARK constructions, such as the original Plonk specification, depend
on a trusted setup to ensure soundness. A trusted setup generates a Structured Reference String (SRS) with a
particular internal structure. For Plonk, this arises from the KZG[Kate et al. 2010] commitments used. These

3

commitments allow the SNARK verifier to achieve sub-linear verification time. However, this comes at the cost of
requiring a trusted setup, whereas PCDL for example, uses an untrusted setup.

An untrusted setup, creates a Uniform Random String of the form:

URS = {a1G, a2G, . . . , aDG}

Where D represents the maximum degree bound of a polynomial (in a PCS context) and G is a generator. The URS
must consist solely of generators and all the scalars must be uniformly random. PCDL is then sound, provided that
no adversary knows the scalars. Extracting a from the URS would require solving the Discrete Logarithm problem
(DL), which is assumed to be hard.

To generate the URS transparently, a collision-resistant hash function H : B∗ → E(Fq) can be used to produce the
generators. The URS can then be derived using a genesis string s:

URS = {H(s ++ 1),H(s ++ 2), . . . ,H(s ++ D)}

This method is used in our implementation, as detailed in the implementation section

Bulletproofs In 2017, the Bulletproofs paper[Bünz et al. 2017] was released. Bulletproofs rely on the hardness of
the Discrete Logarithm problem, and uses an untrusted setup. It has logarithmic proof size, linear verification time
and lends itself well to efficient range proofs. It’s also possible to generate proofs for arbitrary circuits, yielding a
zk-NARK. It’s a NARK since we lose the succinctness in terms of verification time, making bulletproofs less efficient
than SNARKs.

At the heart of Bulletproofs lies the Inner Product Argument (IPA), wherein a prover demonstrates knowledge of
two vectors, a, b ∈ Fn

q , with commitment P ∈ E(Fq), and their corresponding inner product, c = ⟨a, b⟩. It creates a
non-interactive proof, with only lg(n) size, by compressing the point and vectors lg(n) times, halving the size of the
vectors each iteration in the proof. Unfortunately, since the IPA, and by extension Bulletproofs, suffer from linear
verification time, bulletproofs are unsuitable for IVC.

Incrementally Verifiable Computation

Valiant originally described IVC in his 2008 paper[Valiant 2008] in the following way:

Suppose humanity needs to conduct a very long computation which will span superpolynomially many
generations. Each generation runs the computation until their deaths when they pass on the computational
configuration to the next generation. This computation is so important that they also pass on a proof that
the current configuration is correct, for fear that the following generations, without such a guarantee,
might abandon the project. Can this be done?

If a computation runs for hundreds of years and ultimately outputs 42, how can we check its correctness without
re-executing the entire process? In order to do this, the verification of the final output of the computation must be
much smaller than simply running the computation again. Valiant creates the concept of IVC and argues that it can
be used to achieve the above goal.

Recently, IVC has seen renewed interest with cryptocurrencies, as this concept lends itself well to the structure of
blockchains. It allows a blockchain node to omit all previous transaction history in favour of only a single state, for
example, containing all current account balances. This is commonly called a succinct blockchain..

In order to achieve IVC, you need a function F (x) ∈ S → S along with some initial state s0 ∈ S. Then you can call
F (x) n times to generate a series of s’s, s ∈ Sn+1:

s0 s1 s2 . . . sn

F (s0) F (s1) F (s2) F (sn−1)

Figure 1: A visualization of the relationship between F (x) and s in a non-IVC setting.

In a blockchain setting, you might imagine any si ∈ s as a set of accounts with corresponding balances, and the
transition function F (x) as the computation happening when a new block is created and therefore a new state, or

4

set of accounts, si is computed1.

In the IVC setting, we have a proof, π, associated with each state, so that anyone can take only a single pair (sm, πm)
along with the initial state and transition function (s0, F (x)) and verify that said state was computed correctly.

s0 (s1, π1) . . . (sn, πn)
P(s0,⊥) P(s1, π1) P(sn−1, πn−1)

Figure 2: A visualization of the relationship between F, s and π in an IVC setting using traditional SNARKs.
P(si, πi) denotes running the SNARK.PROVER(RF , x = {s0, si}, w = {si−1, πi−1}) = πi and F (si−1) = si, where
RF is the transition function F expressed as a circuit.

The proof πi describes the following claim:

"The current state si is computed from applying the function, F , i times to s0 (si = F i(s0) = F (si−1))
and the associated proof πi−1 for the previous state is valid."

Or more formally, πi is a proof of the following claim, expressed as a circuit R:

R := I.K. w = {πi−1, si−1} s.t. si
?= F (si−1) ∧ (si−1

?= s0 ∨ SNARK.VERIFIER(RF , x = {s0, si}, πi−1) ?= ⊤))

Note that RF , si, s0 are not quantified above, as they are public values. The SNARK.VERIFIER represents the
verification circuit in the proof system we’re using. This means, that we’re taking the verifier, representing it as a
circuit, and then feeding it to the prover. This is not a trivial task in practice! Note also, that the verification time
must be sub-linear to achieve an IVC scheme, otherwise the verifier could just have computed F n(s0) themselves, as
s0 and F (x) necessarily must be public.

To see that the above construction works, observe that π1, . . . , πn proves:

I.K. πn−1 s.t. sn = F (sn−1) ∧ (sn−1 = s0 ∨ SNARK.VERIFIER(R, x, πn−1) = ⊤),
I.K. πn−2 s.t. sn−1 = F (sn−2) ∧ (sn−2 = s0 ∨ SNARK.VERIFIER(R, x, πn−2) = ⊤), . . .

s1 = F (s0) ∧ (s0 = s0 ∨ SNARK.VERIFIER(R, x, π0) = ⊤)

Which means that:
SNARK.VERIFIER(R, x, πn) = ⊤ =⇒
sn = F (sn−1) ∧
SNARK.VERIFIER(R, x, πn−1) = ⊤ ∧
sn−1 = F (sn−2) =⇒ . . .

SNARK.VERIFIER(R, x, π1) = ⊤ =⇒
s1 = F (s0)

Thus, by induction sn = F n(s0)

Polynomial Commitment Schemes

In the SNARK section, general-purpose proof schemes were described. Modern general-purpose (zero-knowledge)
proof schemes, such as Sonic[Maller et al. 2019], Plonk[Gabizon et al. 2019] and Marlin[Chiesa et al. 2019], commonly
use Polynomial Commitment Schemes (PCSs) for creating their proofs. This means that different PCSs can be used
to get security under weaker or stronger assumptions.

• KZG PCSs: Uses a trusted setup, which involves generating a Structured Reference String for the KZG
commitment scheme[Kate et al. 2010]. This would give you a traditional SNARK.

• Bulletproofs PCSs: Uses an untrusted setup, assumed secure if the Discrete Log problem is hard, the verifier
is linear.

• FRI PCSs: Also uses an untrusted setup, assumes secure one way functions exist. It has a higher constant
overhead than PCSs based on the Discrete Log assumption, but because it instead assumes that secure one-way
functions exist, you end up with a quantum secure PCS.

1In the blockchain setting, the transition function would also take an additional input representing new transactions, F (x : S, T : P(T)).

5

A PCS allows a prover to prove to a verifier that a committed polynomial evaluates to a certain value, v, given an
evaluation input z. There are five main functions used to prove this (PC.TRIM omitted as it’s unnecessary):

• PC.SETUP(λ, D)ρ → ppPC

The setup routine. Given security parameter λ in unary and a maximum degree bound D. Creates the public
parameters ppPC.

• PC.COMMIT(p : Fd′

q [X], d : N, ω : Option(Fq))→ E(Fq)

Commits to a degree-d′ polynomial p with degree bound d where d′ ≤ d using optional hiding ω.

• PC.OPENρ(p : Fd′

q [X], C : E(Fq), d : N, z : Fq, ω : Option(Fq))→ EvalProof

Creates a proof, π ∈ EvalProof , that the degree d′ polynomial p, with commitment C, and degree bound d
where d′ ≤ d, evaluated at z gives v = p(z), using the hiding input ω if provided.

• PC.CHECKρ(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result(⊤,⊥)

Checks the proof π that claims that the degree d′ polynomial p, with commitment C, and degree bound d
where d′ ≤ d, evaluates to v = p(z).

Any NP-problem, X ∈ NP , with a witness w can be compiled into a circuit RX . This circuit can then be fed to a
general-purpose proof scheme prover PX along with the witness and public input (x, w) ∈ X, that creates a proof of
the statement ”RX(x, w) = ⊤”. Simplifying slightly, they typically consists of a series of pairs representing opening
proofs:

(q1 = (C1, d, z1, v1, π1), . . . , qm = (Cm, d, zm, vm, πm))

These pairs will henceforth be more generally referred to as instances, q ∈ Instancem. They can then be verified
using PC.CHECK:

PC.CHECK(C1, d, z1, v1, π1) ?= . . .
?= PC.CHECK(Cm, d, zm, vm, πm) ?= ⊤

Along with some checks that the structure of the underlying polynomials p, that q was created from, satisfies
any desired relations associated with the circuit RX . We can model these relations, or identities, using a function
IX ∈ Instance→ {⊤,⊥}. If,

∀j ∈ [m] : PC.CHECK(Cj , d, zj , vj , πj) ?= ⊤ ∧ IX(qj) ?= ⊤

Then the verifier VX will be convinced that w is a valid witness for X. In this way, a proof of knowledge of a witness
for any NP-problem can be represented as a series of PCS evaluation proofs, including our desired witness that
sn = F n(s0).

A PCS of course also has soundness and completeness properties:

Completeness: For every maximum degree bound D = poly(λ) ∈ N and publicly agreed upon d ∈ N:

Pr


deg(p) ≤ d ≤ D,

PC.CHECKρ(C, d, z, v, π) = 1

ρ← U(λ)
ppPC ← PC.SETUPρ(1λ, D),

(p, d, z, ω)← Aρ(ppPC),
v ← p(z),
C ← PC.COMMITρ(p, d, ω),
π ← PC.OPENρ(p, C, d, z, ω)


= 1.

I.e. an honest prover will always convince an honest verifier.

Knowledge Soundness: For every maximum degree bound D = poly(λ) ∈ N, polynomial-size adversary A and
publicly agreed upon d, there exists an efficient extractor E such that the following holds:

Pr


PC.CHECKρ(C, d, z, v, π) = 1

⇓
C = PC.COMMITρ(p, d, ω)
v = p(z), deg(p) ≤ d ≤ D

ρ← U(λ)
ppPC ← PC.SETUPρ(1λ, D)

(C, d, z, v, π)← Aρ(ppPC)
(p, ω)← Eρ(ppPC)

 ≥ 1− negl(λ).

6

I.e. for any adversary, A, outputting an instance, the knowledge extractor can recover p such that the following
holds: C is a commitment to p, v = p(c), and the degree of p is properly bounded. Note that for this protocol, we
have knowledge soundness, meaning that A, must actually have knowledge of p (i.e. the E can extract it).

Accumulation Schemes

The authors of a 2019 paper[Bowe et al. 2019] presented Halo, the first practical example of recursive proof composition
without a trusted setup. Using a modified version of the Bulletproofs-style Inner Product Argument (IPA), they
present a polynomial commitment scheme. Computing the evaluation of a polynomial p(z) as v = ⟨p(coeffs), z⟩
where z = (z0, z1, . . . , zd) and p(coeffs) ∈ Fd+1 is the coefficient vector of p(X), using the IPA. However, since the
the vector z is not private, and has a certain structure, we can split the verification algorithm in two: A sub-linear
PCDL.SUCCINCTCHECK and linear PCDL.CHECK. Using the PCDL.SUCCINCTCHECK we can accumulate n instances,
and only perform the expensive linear check (i.e. PCDL.CHECK) at the end of accumulation.

In the 2020 paper[Bünz et al. 2020] “Proof-Carrying Data from Accumulation Schemes” , that this project heavily
relies on, the authors presented a generalized version of the previous accumulation structure of Halo that they coined
Accumulation Schemes. Simply put, given a predicate Φ : Instance → {⊤,⊥}, and m representing the number
of instances accumulated for each proof step and may vary for each time AS.PROVER is called. An accumulation
scheme then consists of the following functions:

• AS.SETUP(λ)→ ppAS

When given a security parameter λ (in unary), AS.SETUP samples and outputs public parameters ppAS.

• AS.PROVER(q : Instancem, acci−1 : Acc)→ Acc

The prover accumulates the instances {q1, . . . , qm} in q and the previous accumulator acci−1 into the new
accumulator acci.

• AS.VERIFIER(q : Instancem, acci−1 : Option(Acc), acci : Acc)→ Result(⊤,⊥)

The verifier checks that the instances {q1, . . . , qm} in q was correctly accumulated into the previous accumulator
acci−1 to form the new accumulator acci. The second argument acci−1 is modelled as an Option since in the
first accumulation, there will be no accumulator acc0. In all other cases, the second argument acci−1 must be
set to the previous accumulator.

• AS.DECIDER(acci : Acc)→ Result(⊤,⊥)

The decider performs a single check that simultaneously ensures that all the instances q accumulated in acci

satisfy the predicate, ∀j ∈ [m] : Φ(qj) = ⊤. Assuming the AS.VERIFIER has accepted that the accumulator,
acci correctly accumulates q and the previous accumulator acci−1.

The completeness and soundness properties for the Accumulation Scheme is defined below:

Completeness. For all (unbounded) adversaries A, where f represents an algorithm producing any necessary
public parameters for Φ:

Pr


AS.DECIDERρ(acci) = ⊤
∀j ∈ [m] : Φρ

ppΦ
(qj) = ⊤

⇓
AS.VERIFIERρ(q, acci−1, acci) = ⊤

AS.DECIDERρ(acc) = ⊤

ρ← U(λ)
ppΦ ← fρ

ppAS ← AS.SETUPρ(1λ)
(q, acci−1)← Aρ(ppAS, ppΦ)

acci ← AS.PROVERρ(q, acci−1)

 = 1.

I.e, (AS.VERIFIER, AS.DECIDER) will always accept the accumulation performed by an honest prover.

Soundness: For every polynomial-size adversary A:

Pr


AS.VERIFIERρ(q, acci−1, acci) = ⊤

AS.DECIDERρ(acci) = ⊤
⇓

AS.DECIDERρ(acci−1) = ⊤
∀j ∈ [m], Φρ

ppΦ
(qj) = ⊤

ρ← U(λ)
ppΦ ← fρ

ppAS ← AS.SETUPρ(1λ)
(q, acci−1, acci)← Aρ(ppAS, ppΦ)

 ≥ 1− negl(λ).

7

I.e, For all efficiently-generated accumulators acci−1, acci ∈ Acc and predicate inputs q ∈ Instancem,
if AS.DECIDER(acci) = ⊤ and AS.VERIFIER(qi, acci−1, acci) = ⊤ then, with all but negligible probability,
∀j ∈ [m] : Φ(ppΦ, qj) = ⊤ and AS.DECIDER(acci) = ⊤.

IVC from Accumulation Schemes

For simplicity, as in the PCS section, we assume we have an underlying NARK2 which proof consists of only instances
π ∈ Proof = {q}. We assume this NARK has three algorithms:

• NARK.PROVER(R : Circuit, x : PublicInputs, w : Witness)→ Proof
• NARK.VERIFIER(R : Circuit, x : PublicInputs, π)→ Result(⊤,⊥)
• NARK.VERIFIERFAST(R : Circuit, x : PublicInputs)→ Result(⊤,⊥)

The (NARK.PROVER, NARK.VERIFIER) pair is just the usual algorithms, but the verifier may run in linear time.
The NARK.VERIFIERFAST must run in sub-linear time however, but may assume each qj ∈ q is a valid instance,
meaning that ∀qj ∈ q : PC.CHECK(qj) = ⊤. This means that NARK.VERIFIERFAST only performs linear checks to
ensure that the instances, q, representing information about the witness w, satisfies the constraints dictated by the
circuit R and the public inputs x. It also means that when the NARK.VERIFIERFAST accepts with ⊤, then we don’t
know that these relations hold until we also know that all the instances are valid.

Each step in the IVC protocol built from accumulation schemes, consists of the triple (si−1, πi−1, acci−1), representing
the previous proof, accumulator and value. As per usual, the base-case is the exception, that only consists of s0.
This gives us the following chain:

s0 (s1, π1, acc1) . . . (sn, πn, accn)
P(s0,⊥,⊥) P(s1, π1, acc1) P(sn−1, πn−1, accn−1)

Figure 3: A visualization of the relationship between F, s, π and acc in an IVC setting using Accumulation
Schemes. Where P is defined to be P(si−1, πi−1, acci−1) = IVC.PROVER(si−1, πi−1, acci−1) = πi, si = F (si−1),
acci = AS.PROVER(q, acci−1).

Before describing the IVC protocol, we first describe the circuit for the IVC relation as it’s more complex than for
the naive SNARK-based approach. Let:

• πi−1 = q, acci−1, si−1 from the previous iteration.
• si = F (si−1)
• acci = AS.PROVER(q, acci−1)

Giving us the public inputs x = {RIV C , s0, si, acci} and witness w = {si−1, πi−1 = q, acci−1}, which will be used to
construct the the IVC circuit RIV C :

xi−1 := {RIV C , si−1, acci−1}

V1 := NARK.VERIFIERFAST(RIV C , xi−1, πi−1) ?= ⊤

V2 := AS.VERIFIER(πi−1 = q, acci−1, acci)
?= ⊤

RIV C := I.K w s.t. F (si−1) ?= si ∧ (si−1
?= s0 ∨ (V1 ∧ V2))

2Technically it’s a NARK since verification may be linear.

8

q acci−1 acciRIV C xi−1 πi−1si si−1 s0

NARK.VERIFIERFAST AS.VERIFIER

∧si−1
?= s0

∨F (si−1) ?= si

∧

Figure 4: A visualization of RIV C

The verifier and prover for the IVC scheme can be seen below:

Algorithm IVC.PROVER

Inputs
RIV C : Circuit The IVC circuit as defined above.
x : PublicInputs Public inputs for RIV C .
w : Option(Witness) Private inputs for RIV C .

Output
(S, Proof , Acc) The values for the next IVC iteration.

Require: x = {s0}
Require: w = {si−1, πi−1, acci−1} ∨ w = ⊥

1: Parse s0 from x = {s0}.
2: if w = ⊥ then
3: w = {si−1 = s0} (base-case).
4: else
5: Run the accumulation prover: acci = AS.PROVER(πi−1 = q, acci−1).
6: Compute the next value: si = F (si−1).
7: Define x′ = x ∪ {RIV C , si, acci}.
8: end if
9: Then generate a NARK proof πi using the circuit RIV C : πi = NARK.PROVER(RIV C , x′, w).

10: Output (si, πi, acci)

Algorithm IVC.VERIFIER

Inputs
RIV C : Circuit The IVC circuit.
x : PublicInputs Public inputs for RIV C .

Output
Result(⊤,⊥) Returns ⊤ if the verifier accepts and ⊥ if the verifier rejects.

Require: x = {s0, si, acci}
1: Define x′ = x ∪ {RIV C}.
2: Verify that the accumulation scheme decider accepts: ⊤ ?= AS.DECIDER(acci).
3: Verify the validity of the IVC proof: ⊤ ?= NARK.VERIFIER(RIV C , x′, πi).
4: If the above two checks pass, then output ⊤, else output ⊥.

Consider the above chain run n times. As in the “simple” SNARK IVC construction, if IVC.VERIFIER accepts at

9

the end, then we get a chain of implications:

IVC.VERIFIER(RIV C , xn = {s0, sn, acci}, πn) = ⊤ =⇒
∀i ∈ [n],∀qj ∈ πi = q : PCDL.CHECK(qj) = ⊤ ∧
F (sn−1) = sn ∧ (sn−1 = s0 ∨ (V1 ∧ V2)) =⇒
AS.VERIFIER(πn−1, accn−1, accn) = ⊤ ∧
NARK.VERIFIERFAST(RIV C , xn−1, πn−1) = ⊤ =⇒ . . .

F (s0) = s1 ∧ (s0 = s0 ∨ (V1 ∧ V2)) =⇒
F (s0) = s1 =⇒

Since IVC.VERIFIER runs AS.DECIDER, the previous accumulator is valid, and by recursion, all previous accumulators
are valid, given that each AS.VERIFIER accepts. Therefore, if a AS.VERIFIER accepts, that means that q = πi

are valid evaluation proofs. We defined NARK.VERIFIERFAST, s.t. it verifies correctly provided the q’s are valid
evaluation proofs. This allows us to recurse through this chain of implications.

From this we learn:

1. ∀i ∈ [2, n] : AS.VERIFIER(πi−1, acci−1, acci) = ⊤, i.e, all accumulators are accumulated correctly.
2. ∀i ∈ [2, n] : NARK.VERIFIERFAST(RIV C , xi−1, πi−1), i.e, all the proofs are valid.

These points in turn imply that ∀i ∈ [n] : F (si−1) = si, therefore, sn = F n(s0). From this discussion it should be
clear that an honest prover will convince an honest verifier, i.e. completeness holds. As for soundness, it should
mostly depend on the soundness of the underlying PCS, accumulation scheme and NARK3.

As for efficiency, assuming that:

• The runtime of NARK.PROVER scales linearly with the degree-bound, d, of the polynomial, pj , used for each
qj ∈ qm (O(d))

• The runtime of NARK.VERIFIERFAST scales logarithmically with the degree-bound, d, of pj (O(lg(d)))
• The runtime of NARK.VERIFIER scales linearly with the degree-bound, d, of pj (O(d))
• The runtime of F is less than O(d), since it needs to be compiled to a circuit of size at most ≈ d

Then we can conclude:

• The runtime of IVC.PROVER is:
– Step 5: The cost of running ASDL.PROVER, O(d).
– Step 6: The cost of computing F , O(F (x)).
– Step 7: The cost of running NARK.PROVER, O(d).

Totalling O(F (x) + d). So O(d).
• The runtime of IVC.VERIFIER is:

– Step 2: The cost of running ASDL.DECIDER, O(d) scalar multiplications.
– Step 3: The cost of running NARK.VERIFIER, O(d) scalar multiplications.

Totalling O(2d). So O(d)

Notice that although the runtime of IVC.VERIFIER is linear, it scales with d, not n. So the cost of verifying does not
scale with the number of iterations.

The Implementation
The authors of the accumulation scheme paper[Bünz et al. 2020] also define a concrete Accumulation Scheme using
the Discrete Log assumption ASDL, which uses the same algorithms as in the 2019 Halo paper. This accumulation
scheme in turn, relies heavily upon a Polynomial Commitment Scheme, PCDL, which is also described in the paper.
Both of these have been implemented as part of this project in Rust and the rest of the document will go over these
sets of algorithms, their security, performance and implementation details.

3A more thorough soundness discussion would reveal that running the extractor on a proof-chain of length n actually fails, as argued
by Valiant in his original 2008 paper. Instead he constructs a proof-tree of size O(lg(n)) size, to circumvent this. However, practical
applications conjecture that the failure of the extractor does not lead to any real-world attack, thus still achieving constant proof sizes,
but with an additional security assumption added.

10

Since these kinds of proofs can both be used for proving knowledge of a large witness to a statement succinctly,
and doing so without revealing any information about the underlying witness, the zero-knowledge property of the
protocol is described as optional. This is highlighted in the algorithmic specifications as the parts colored blue.
In the Rust implementation these parts were included as they were not too cumbersome to implement. However,
since the motivation for this project was IVC, wherein the primary focus is succinctness, not zero-knowledge, the
zero-knowledge parts of the protocol have been omitted from the soundness, completeness and efficiency discussions.

The authors of the paper present additional algorithms for distributing public parameters (CM.TRIM, PCDL.TRIM,
ASDL.INDEXER), we omit them in the following algorithmic specifications on the assumption that:

a. The setups has already been run, producing values N, D ∈ N, S, H ∈R E(Fq), G ∈R E(Fq) where D = N − 1,
N is a power of two and any random values have been sampled honestly.

b. All algorithms have global access to the above values.

This closely models the implementation where the public parameters were randomly sampled using a hashing
algorithm for a computationally viable value of N . As described in the subsection on trusted and untrusted setups, a
genesis string was prepended with an numeric index, run through the sha3 hashing algorithm, then used to generate
curve points. These must be generators for E(Fq) but since all points (except the identity point O) of the Pallas
curve used are generators, they were simply sampled uniformly randomly from all of E(Fq). These values were
then added as global constants in the code. See the /code/src/consts.rs in the repository for more details. The
associated rust code for generating the public parameters can be seen below:

1 fn get_urs_element(i: usize) -> PallasPoint {
2 let genesis_string = "To understand recursion, one must first understand recursion";
3

4 // Hash `i` concatenated with `genesis_string`
5 let mut hasher = Sha3_256::new();
6 hasher.update(i.to_le_bytes());
7 hasher.update(genesis_string.as_bytes());
8 let hash_result = hasher.finalize();
9

10 PallasPoint::generator() * PallasScalar::from_le_bytes_mod_order(&hash_result)
11 }
12

13 fn get_pp(n: usize) -> (PallasPoint, PallasPoint, Vec<PallasPoint>) {
14 let S = get_urs_element(0);
15 let H = get_urs_element(1);
16 let mut Gs = Vec::with_capacity(n);
17 for i in 2..(n + 2) {
18 Gs.push(get_urs_element(i))
19 }
20 (S, H, Gs)
21 }

11

https://github.com/rasmus-kirk/halo-accumulation/blob/main/code/src/consts.rs

PCDL: The Polynomial Commitment Scheme
Outline
The Polynomial Commitment Scheme, PCDL, is based on the Discrete Log assumption, and does not require a
trusted setup. Most of the functions simply works as one would expect for a PCS, but uniquely for this scheme, we
have the function PCDL.SUCCINCTCHECK that allows deferring the expensive part of checking PCS openings until a
later point. This function is what leads to the accumulation scheme, ASDL, which is also based the Discrete Log
assumption. We have five main functions:

• PCDL.SETUP(λ, D)ρ0 → ppPC

The setup routine. Given security parameter λ in unary and a maximum degree bound D:

– Runs ppCM ← CM.SETUP(λ, D + 1),
– Samples H ∈R E(Fq) using the random oracle H ← ρ0(ppCM),
– Finally, outputs ppPC = (ppCM, H).

• PCDL.COMMIT(p : Fd′

q [X], d : N, ω : Option(Fq))→ E(Fq):

Creates a commitment to the coefficients of the polynomial p of degree d′ ≤ d with optional hiding ω, using a
Pedersen commitment.

• PCDL.OPENρ0(p : Fd′

q [X], C : E(Fq), d : N, z : Fq, ω : Option(Fq))→ EvalProof :

Creates a proof π that states: “I know p ∈ Fd′

q [X] with commitment C ∈ E(Fq) s.t. p(z) = v and deg(p) =
d′ ≤ d” where p is private and d, z, v are public.

• PCDL.SUCCINCTCHECKρ0(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result((Fd
q [X],E(Fq)),⊥):

Cheaply checks that a proof π is correct. It is not a full check however, since an expensive part of the check is
deferred until a later point.

• PCDL.CHECKρ0(C : E(Fq), d : N, z : Fq, v : Fq, π : EvalProof)→ Result(⊤,⊥):

The full check on π.

The following subsections will describe them in pseudo-code, except for PCDL.SETUP.

PCDL.COMMIT

Algorithm 1 PCDL.COMMIT

Inputs
p : Fd′

q [X] The univariate polynomial that we wish to commit to.
d : N A degree bound for p.
ω : Option(Fq) Optional hiding factor for the commitment.

Output
C : E(Fq) The Pedersen commitment to the coefficients of polynomial p.

Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Let p(coeffs) be the coefficient vector for p.
2: Output C := CM.COMMIT(G, p(coeffs), ω).

PCDL.COMMIT is rather simple, we just take the coefficients of the polynomial and commit to them using a Pedersen
commitment.

12

PCDL.OPEN

Algorithm 2 PCDL.OPENρ0

Inputs
p : Fd′

q [X] The univariate polynomial that we wish to open for.
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound for p.
z : Fq The element that z will be evaluated on v = p(z).
ω : Option(Fq) Optional hiding factor for C. Must be included if C has hiding!

Output
EvalProof Proof of: "I know p ∈ Fd′

q [X] with commitment C s.t. p(z) = v".
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Let n = d + 1
2: Compute v = p(z) and let n = d + 1.
3: Sample a random polynomial p̄ ∈R F≤d

q [X] such that p̄(z) = 0.
4: Sample corresponding commitment randomness ω̄ ∈R Fq.
5: Compute a hiding commitment to p̄: C̄ ← PCDL.COMMIT(p̄, d, ω̄) ∈ E(Fq).
6: Compute the challenge α := ρ0(C, z, v, C̄) ∈ Fq.
7: Compute commitment randomness ω′ := ω + αω̄ ∈ Fq.
8: Compute the polynomial p′ := p + αp̄ =

∑
i=0 ciXi ∈ F≤d

q [X].
9: Compute a non-hiding commitment to p′: C ′ := C + αC̄ − ω′S ∈ E(Fq).

10: Compute the 0-th challenge field element ξ0 := ρ0(C ′, z, v) ∈ Fq, then H ′ := ξ0H ∈ E(Fq).
11: Initialize the vectors (c0 is defined to be coefficient vector of p′):

c0 := (c0, c1, . . . , cd) ∈ F n
q

z0 := (1, z1, . . . , zd) ∈ F n
q

G0 := (G0, G1, . . . , Gd) ∈ E(Fq)n

12: for i ∈ [lg(n)] do
13: Compute Li := CM.COMMIT(l(Gi−1) ++ H ′, r(ci−1) ++ ⟨r(ci−1), l(zi−1)⟩, ⊥)
14: Compute Ri := CM.COMMIT(r(Gi−1) ++ H ′, l(ci−1) ++ ⟨l(ci−1), r(zi−1)⟩, ⊥)
15: Generate the i-th challenge ξi := ρ0(ξi−1, Li, Ri) ∈ Fq.
16: Compress values for the next round:

Gi := l(Gi−1) + ξi · r(Gi−1)
ci := l(ci−1) + ξ−1

i · r(ci−1)
zi := l(zi−1) + ξi · r(zi−1)

17: end for
18: Finally output the evaluation proof π := (L, R, U := G(0), c := c(0), C̄, ω′)

Where l(x), r(x) returns the respectively left and right half of the vector given.

The PCDL.OPEN algorithm mostly follows the IPA algorithm from Bulletproofs. Except, in this case we are trying
to prove we know polynomial p s.t. p(z) = v = ⟨c0, z0⟩. So because z is public, we can get away with omitting the
generators, (H), for b which we would otherwise need in the Bulletproofs IPA. For efficiency we also send along the
curve point U = G(0), which the original IPA does not do. The PCDL.SUCCINCTCHECK uses U to make its check
and PCDL.CHECK verifies the correctness of U .

13

PCDL.SUCCINCTCHECK

Algorithm 3 PCDL.SUCCINCTCHECKρ0

Inputs
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound on p.
z : Fq The element that p is evaluated on.
v : Fq The claimed element v = p(z).
π : EvalProof The evaluation proof produced by PCDL.OPEN.

Output
Result((Fd

q [X],E(Fq)),⊥) The algorithm will either succeed and output (h : Fd
q [X], U : E(Fq)) if π is

a valid proof and otherwise fail (⊥).
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Parse π as (L, R, U := G(0), c := c(0), C̄, ω′) and let n = d + 1.
2: Compute the challenge α := ρ0(C, z, v, C̄) ∈ Fq.
3: Compute the non-hiding commitment C ′ := C + αC̄ − ω′S ∈ E(Fq).
4: Compute the 0-th challenge: ξ0 := ρ0(C ′, z, v), and set H ′ := ξ0H ∈ E(Fq).
5: Compute the group element C0 := C ′ + vH ′ ∈ E(Fq).
6: for i ∈ [lg(n)] do
7: Generate the i-th challenge: ξi := ρ0(ξi−1, Li, Ri) ∈ Fq.
8: Compute the i-th commitment: Ci := ξ−1

i Li + Ci−1 + ξiRi ∈ E(Fq).
9: end for

10: Define the univariate polynomial h(X) :=
∏lg(n)−1

i=0 (1 + ξlg(n)−iX
2i) ∈ Fq[X].

11: Compute the evaluation v′ := c · h(z) ∈ Fq.
12: Check that Clg(n)

?= cU + v′H ′

13: Output (h(X), U).

The PCDL.SUCCINCTCHECK algorithm performs the same check as in the Bulletproofs protocol. With the only
difference being that instead of calculating G(0) itself, it trusts that the verifier sent the correct U = G(0) in the
prover protocol, and defers the verification of this claim to PCDL.CHECK. Notice also the “magic” polynomial h(X),
which has a degree d, but can be evaluated in lg(d) time.

PCDL.CHECK

Algorithm 4 PCDL.CHECKρ0

Inputs
C : E(Fq) A commitment to the coefficients of p.
d : N A degree bound on p
z : Fq The element that p is evaluated on.
v : Fq The claimed element v = p(z).
π : EvalProof The evaluation proof produced by PCDL.OPEN

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if π is a valid proof and otherwise

fail (⊥).
Require: d ≤ D
Require: (d + 1) is a power of 2.

1: Check that PCDL.SUCCINCTCHECK(C, d, z, v, π) accepts and outputs (h, U).
2: Check that U

?= CM.COMMIT(G, h(coeffs),⊥), where h(coeffs) is the coefficient vector of the polynomial h.

Since PCDL.SUCCINCTCHECK handles the verification of the IPA given that U = G(0), we run PCDL.SUCCINCTCHECK,
then check that U

?= (G(0) = CM.COMMIT(G, h(coeffs),⊥) = ⟨G, h(coeffs)⟩).

14

Completeness

Check 1 (Clg(n)
?= cU + v′H ′) in PCDL.SUCCINCTCHECK:

Let’s start by looking at Clg(n). The verifier computes Clg(n) as:

C0 = C ′ + vH ′ = C + vH ′

Clg(n) = C0 +
lg(n)−1∑

i=0
ξ−1

i+1Li + ξi+1Ri

Given that the prover is honest, the following invariant should hold:

Ci+1 = ⟨ci+1, Gi+1⟩+ ⟨ci+1, zi+1⟩H ′

= ⟨l(ci) + ξ−1
i+1r(ci), l(Gi) + ξi+1r(Gi)⟩+ ⟨l(ci) + ξ−1

i+1r(ci), l(zi) + ξi+1r(zi)⟩H ′

= ⟨l(ci), l(Gi)⟩+ ξi+1⟨l(ci)), r(Gi⟩+ ξ−1
i+1⟨r(ci), l(Gi)⟩+ ⟨r(ci), r(Gi)⟩

+ (⟨l(ci), l(zi)⟩+ ξi+1⟨l(ci), r(zi)⟩+ ξ−1
i+1⟨r(ci), l(zi)⟩+ ⟨r(ci), l(zi)⟩)H ′

If we group these terms:

Ci+1 = ⟨l(ci), l(zi)⟩ + ⟨r(ci), r(Gi)⟩ + ξi+1⟨l(ci), r(Gi)⟩ + ξ−1
i+1⟨r(ci), l(Gi)⟩

+ (⟨l(ci), l(zi)⟩ + ⟨r(ci), r(zi)⟩)H ′ + ξi+1⟨l(ci), r(zi)⟩H ′ + ξ−1
i+1⟨r(ci), l(zi)⟩H ′

= Ci + ξi+1Ri + ξ−1
i+1Li

Where:
Li = ⟨r(ci), l(Gi)⟩+ ⟨r(ci), l(zi)⟩H ′

Ri = ⟨l(ci), r(Gi)⟩+ ⟨l(ci), r(zi)⟩H ′

We see why L, R is defined the way they are. They help the verifier check that the original relation hold, by showing
it for the compressed form Ci+1. L, R is just the minimal information needed to communicate this fact.

This leaves us with the following vectors (notice the slight difference in length):

L = (L1, . . . , Llg(n))
R = (R1, . . . , Rlg(n))
C = (C0, . . . , Clg(n))
ξ = (ξ0, . . . , ξlg(n))

This means an honest prover will indeed produce L, R s.t. Clg(n) = C0 +
∑lg(n)−1

i=0 ξ−1
i+1Li + ξi+1Ri

Let’s finally look at the left-hand side of the verifying check:

Clg(n) = C0 +
lg(n)−1∑

i=0
ξ−1

i+1Li + ξi+1Ri

The original definition of Ci:
Clg(n) = ⟨clg(n), Glg(n)⟩+ ⟨clg(n), zlg(n)⟩H ′

Vectors have length one, so we use the single elements c(0), G(0), c(0), z(0) of the vectors:

Clg(n) = c(0)G(0) + c(0)z(0)H ′

The verifier has c(0) = c, G(0) = U from π ∈ EvalProof :

Clg(n) = cU + cz(0)H ′

Then, by construction of h(X) ∈ Fd
q [X]:

Clg(n) = cU + ch(z)H ′

15

Finally we use the definition of v′:
Clg(n) = cU + v′H ′

Which corresponds exactly to the check that the verifier makes.

Check 2 (U ?= CM.COMMIT(G, h(coeffs),⊥)) in PCDL.CHECK:

The honest prover will define U = G(0) as promised and the right-hand side will also become U = G(0) by the
construction of h(X).

Knowledge Soundness
This subsection will not contain a full knowledge soundness proof, but it will be briefly discussed that the non-zero-
knowledge version of PCDL should be knowledge sound. The knowledge soundness property of PCDL states:

Pr


PC.CHECKρ(C, d, z, v, π) = 1

⇓
C = PC.COMMITρ(p, d, ω)
v = p(z), deg(p) ≤ d ≤ D

∣∣∣∣∣∣∣∣
ρ← U(λ)

ppPC ← PC.SETUPρ(1λ, D)
(C, d, z, v, π)← Aρ(ppPC)

(p, ω)← Eρ(ppPC)

 ≥ 1− negl(λ).

So, we need to show that:

1. C = PC.COMMITρ(p, d, ω)
2. v = p(z)
3. deg(p) ≤ d ≤ D

The knowledge extractability of PCDL is almost identical to the IPA from bulletproofs[Bünz et al. 2017], so we
assume that we can use the same extractor4, with only minor modifications. The IPA extractor extracts a, b ∈ Fn

q

s.t:
P = ⟨G, a⟩+ ⟨H, b⟩ ∧ v = ⟨c, z⟩

Running the extractor for PCDL should yield:

P = ⟨G, c⟩+ ⟨G, z⟩ ∧ v = ⟨c, z⟩

We should be able to remove the extraction of z since it’s public:

C = ⟨G, c⟩ ∧ v = ⟨c, z⟩

1. C = ⟨G, c⟩ = PC.COMMIT(c, G,⊥) = PC.COMMITρ(p, d,⊥), ω = ⊥ since we don’t consider zero-knowledge.
2. v = ⟨c, z⟩ = ⟨p(coeffs), z⟩ = p(z) by definition of p.
3. deg(p) ≤ d ≤ D. The first bound holds since the vector committed to is known to have length n = d + 1, the

second bound holds trivially, as it’s checked by PCDL.CHECK

The authors, of the paper followed[Bünz et al. 2020], note that the soundness technically breaks down when
turning the IPA into a non-interactive protocol (which is the case for PCDL), and that transforming the IPA into a
non-interactive protocol such that the knowledge extractor does not break down is an open problem:

Security of the resulting non-interactive argument. It is known from folklore that applying the
Fiat–Shamir transformation to a public-coin k-round interactive argument of knowledge with negligible
soundness error yields a non-interactive argument of knowledge in the random-oracle model where the
extractor E runs in time exponential in k. In more detail, to extract from an adversary that makes
t queries to the random oracle, E runs in time tO(k). In our setting, the inner-product argument has
k = O(log d) rounds, which means that if we apply this folklore result, we would obtain an extractor
that runs in superpolynomial (but sub-exponential) time tO(log d) = 2O(log(λ)2). It remains an interesting
open problem to construct an extractor that runs in polynomial time.

This has since been solved in a 2023 paper[Attema et al. 2023]. The abstract of the paper describes:
4Admittedly, this assumption is not a very solid one if the purpose was to create a proper knowledge soundness proof, but as the

section is more-so devoted to give a justification for why PCDL ought to be sound, it will do. In fact, the authors of the accumulation
scheme paper[Bünz et al. 2020], use a similar argument more formally by stating (without direct proof!), that the PCDL protocol is a
special case of the IPA presented in another paper[Bünz et al. 2019] by mostly the same authors.

16

Unfortunately, the security loss for a (2µ + 1)-move protocol is, in general, approximately Qµ, where Q is
the number of oracle queries performed by the attacker. In general, this is the best one can hope for, as
it is easy to see that this loss applies to the µ-fold sequential repetition of Σ-protocols, . . . , we show that
for (k1, . . . , kµ)-special-sound protocols (which cover a broad class of use cases), the knowledge error
degrades linearly in Q, instead of Qµ.

The IPA is exactly such a (k1, . . . , kµ)-special-sound protocol, they even directly state that this result applies to
bulletproofs. As such we get a knowledge error that degrades linearly, instead of superpolynomially, in number of
queries, t, that the adversary makes to the random oracle. Thus, the extractor runs in the required polynomial time
(O(t) = O(poly(λ))).

Efficiency
Given two operations f(x), g(x) where f(x) is more expensive than g(x), we only consider f(x), since O(f(n)+g(n)) =
O(f(n)). For all the algorithms, the most expensive operations will be scalar multiplications. We also don’t bother
counting constant operations, that does not scale with the input. Also note that:

O

lg(n)∑
i=2

n

i2

 = O

n

lg(n)∑
i=2

1
i2

 = O(n · c) = O(n)

Remember that in the below contexts n = d + 1

• PCDL.COMMIT: n = O(d) scalar multiplications and n = O(d) point additions.
• PCDL.OPEN:

– Step 1: 1 polynomial evaluation, i.e. n = O(d) field multiplications.
– Step 13 & 14: Both commit lg(n) times, i.e. 2(

∑lg(n)
i=2 (n + 1)/i) = O(2n) scalar multiplications. The sum

appears since we halve the vector length each loop iteration.
– Step 16: lg(n) vector dot products, i.e.

∑lg(n)
i=2 n/i = O(n) scalar multiplications.

In total, O(3d) = O(d) scalar multiplications.
• PCDL.SUCCINCTCHECK:

– Step 7: lg(n) hashes.
– Step 8: 3 lg(n) point additions and 2 lg(n) scalar multiplications.
– step 11: The evaluation of h(X) which uses O(lg(n)) field additions.

In total, O(2 lg(n)) = O(lg(d)) scalar multiplications.
• PCDL.CHECK:

– Step 1: Running PCDL.SUCCINCTCHECK takes O(2 lg(d)) scalar multiplications.
– Step 2: Running CM.COMMIT(G, h(coeffs),⊥) takes O(d) scalar multiplications.

Since step two dominates, we have O(d) scalar multiplications.

So PCDL.OPEN, PCDL.CHECK and PCDL.COMMIT is linear and, importantly, PCDL.SUCCINCTCHECK is sub-linear.

Sidenote: The runtime of h(X)

Recall the structure of h(X):

h(X) :=
lg(n)−1∏

i=0
(1 + ξlg(n)−iX

2i

) ∈ Fq[X]

First note that
(∏lg(n)−1

i=0 a
)

leads to lg(n) factors. Calculating X2i can be computed as:

X20
, X21

= (X20
)2, X22

= (X21
)2, . . .

So that part of the evaluation boils down to the cost of squaring in the field. We therefore have lg(n)
squarings (from X2i), and lg(n) field multiplications from ξlg(n)−i · X2i . Each squaring can naively
be modelled as a field multiplication (x2 = x · x). We therefore end up with 2 lg(n) = O(lg(n)) field
multiplications and lg(n) field additions. The field additions are ignored as the multiplications dominate.

Thus, the evaluation of h(X) requires O(lg(n)) field multiplications, which dominate the runtime.

17

ASDL: The Accumulation Scheme
Outline
The ASDL accumulation scheme is an accumulation scheme for accumulating polynomial commitments. This means
that the corresponding predicate, ΦAS, that we accumulate for, represents the checking of polynomial commitment
openings, ΦAS(qi) = PCDL.CHECK(qi). The instances are assumed to have the same degree bounds. A slight
deviation from the general AS specification, is that that the algorithms don’t take the old accumulator acci−1
as input, instead, since it has the same form as instances ((Cacc, dacc, zacc, vacc), πV), it will be prepended to the
instance list q. We have six main functions:

• ASDL.SETUP(1λ, D)→ ppAS

Outputs ppAS = PCDL.SETUP(1λ, D).

• ASDL.COMMONSUBROUTINE(q : Instancem, πV : AccHiding)→ Result((E(Fq),N,Fq,Fd
q [X]),⊥)

ASDL.COMMONSUBROUTINE will either succeed if the instances have consistent degree and hiding parameters
and will otherwise fail. It accumulates all previous instances into a new polynomial h(X), and is run
by both ASDL.PROVER and ASDL.VERIFIER in order to ensure that the accumulator, generated from h(X)
correctly accumulates the instances. It returns (C̄, d, z, h(X)) representing the information needed to create
the polynomial commitment represented by acci.

• ASDL.PROVER(q : Instancem)→ Result(Acc,⊥):

Accumulates the instances q, and an optional previous accumulator acci−1, into a new accumulator acci. If
there is a previous accumulator acci−1 then it is converted into an instance, since it has the same form, and
prepended to q, before calling the prover.

• ASDL.VERIFIER(q : Instancem, acci : Acc)→ Result(⊤,⊥):

Verifies that the instances q (as with ASDL.PROVER, including a possible acci−1) was correctly accumulated
into the new accumulator acci.

• ASDL.DECIDER(acci : Acc)→ Result(⊤,⊥):

Checks the validity of the given accumulator acci along with all previous accumulators that was accumulated
into acci.

This means that accumulating m instances, q = [qi]m, should yield acci, using the ASDL.PROVER(q). If the verifier
accepts ASDL.VERIFIER(q, acci) = ⊤, and ASDL.DECIDER accepts the accumulator (ASDL.DECIDER(acci) = ⊤),
then all the instances, q, will be valid, by the soundness property of the accumulation scheme. This is proved for
ASDL in the soundness section. Note that this also works recursively, since qacci−1 ∈ q is also proven valid by the
decider.

The following subsections will describe the functions in pseudo-code, except ASDL.SETUP.

18

ASDL.COMMONSUBROUTINE

Algorithm 5 ASDL.COMMONSUBROUTINE

Inputs
q : Instancem New instances and accumulators to be accumulated.
πV : AccHiding Necessary parameters if hiding is desired.

Output
Result((E(Fq),N,Fq,Fd

q [X]),⊥) The algorithm will either succeed (E(Fq),N,Fq,Fd
q [X]) if the instances has

consistent degree and hiding parameters and will otherwise fail (⊥).
Require: (D + 1) = 2k, where k ∈ N

1: Parse d from q1.
2: Parse πV as (h0, U0, ω), where h0(X) = aX + b ∈ F1

q[X], U0 ∈ E(Fq) and ω ∈ Fq

3: Check that U0 is a deterministic commitment to h0: U0 = PCDL.COMMIT(h, d,⊥).
4: for j ∈ [0, m] do
5: Parse qj as a tuple ((Cj , dj , zj , vj), πj).
6: Compute (hj(X), Uj) := PCDL.SUCCINCTCHECKρ0(Cj , dj , zj , vj , πj).
7: Check that dj

?= d
8: end for
9: Compute the challenge α := ρ1(h, U) ∈ Fq

10: Let the polynomial h(X) := h0 +
∑m

j=1 αjhj(X) ∈ Fq[X]
11: Compute the accumulated commitment C := U0 +

∑m
j=1 αjUj

12: Compute the challenge z := ρ1(C, h(X)) ∈ Fq.
13: Randomize C: C̄ := C + ωS ∈ E(Fq).
14: Output (C̄, D, z, h(X)).

The ASDL.COMMONSUBROUTINE does most of the work of the ASDL accumulation scheme. It takes the given
instances and runs the PCDL.SUCCINCTCHECK on them to acquire [(hj(X), Uj)]mi=0 for each of them. It then
creates a linear combination of hj(X) using a challenge point α and computes the claimed commitment for this
polynomial C =

∑m
j=1 αjUj , possibly along with hiding information. This routine is run by both ASDL.PROVER and

ASDL.VERIFIER in order to ensure that the accumulator, generated from h(X) correctly accumulates the instances.
To see the intuition behind why this works, refer to the note in the ASDL.DECIDER section.

ASDL.PROVER

Algorithm 6 ASDL.PROVER

Inputs
q : Instancem New instances and accumulators to be accumulated.

Output
Result(Acc,⊥) The algorithm will either succeed ((C̄, d, z, v, π), πV) ∈ Acc) if the instances

has consistent degree and hiding parameters and otherwise fail (⊥).
Require: ∀(_, di, _, _, _) ∈ q,∀(_, dj , _, _, _) ∈ q : di = dj ∧ di ≤ D
Require: (di + 1) = 2k, where k ∈ N

1: Sample a random linear polynomial h0(X) ∈R F ≤d
q [X]

2: Then compute a deterministic commitment to h0(X): U0 := PCDL.COMMIT(h0, d,⊥)
3: Sample commitment randomness ω ∈R Fq, and set πV := (h0, U0, ω).
4: Then, compute the tuple (C̄, d, z, h(X)) := ASDL.COMMONSUBROUTINE(q, πV).
5: Compute the evaluation v := h(z) ∈ Fq.
6: Generate the evaluation proof π := PCDL.OPEN(h(X), C̄, d, z, ω).
7: Finally, output the accumulator acci = ((C̄, d, z, v, π), πV).

Simply accumulates the the instances, q, into new accumulator acci, using ASDL.COMMONSUBROUTINE.

19

ASDL.VERIFIER

Algorithm 7 ASDL.VERIFIER

Inputs
q : Instancem New instances and possible accumulator to be accumulated.
acci : Acc The accumulator that accumulates q. Not the previous accumulator acci−1.

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if acci correctly accumulates q and

otherwise fail (⊥).
Require: (D + 1) = 2k, where k ∈ N

1: Parse acci as ((C̄, d, z, v, _), πV)
2: The accumulation verifier computes (C̄ ′, d′, z′, h(X)) := ASDL.COMMONSUBROUTINE(q, πV)
3: Then checks that C̄ ′ ?= C̄, d′ ?= d, z′ ?= z, and h(z) ?= v.

The verifier also runs ASDL.COMMONSUBROUTINE, therefore verifying that acci correctly accumulates q, which
means:

• C̄ = C + ωS =
∑m

j=1 αjUj + ωS
• ∀(_, dj , _, _, _) ∈ q : dj = d
• z = ρ1(C, h(X))
• v = h(z)
• h(X) =

∑m
j=0 αjhj(X)

• α := ρ1(h, U)

ASDL.DECIDER

Algorithm 8 ASDL.DECIDER

Inputs
acci : Acc The accumulator.

Output
Result(⊤,⊥) The algorithm will either succeed (⊤) if the accumulator has correctly

accumulated all previous instances and will otherwise fail (⊥).
Require: acci.d ≤ D
Require: (acci.d + 1) = 2k, where k ∈ N

1: Parse acci as ((C̄, d, z, v, π), _)
2: Check ⊤ ?= PCDL.CHECK(C̄, d, z, v, π)

The decider fully checks the accumulator acci, this verifies each previous accumulator meaning that:

∀i ∈ [n],∀j ∈ [m] :
ASDL.VERIFIER((TOINSTANCE(acci−1) ++ qi−1), acci) ∧ASDL.DECIDER(accn) =⇒

ΦAS(q(i)
j) = PCDL.CHECK(q(i)

j) = ⊤

The sidenote below gives an intuition why this is the case.

Sidenote: Why does checking acci check all previous instances and previous accumulators?

The ASDL.PROVER runs the ASDL.COMMONSUBROUTINE that creates an accumulated polynomial h from
[hj(X)]m that is in turn created for each instance qj ∈ qi by PCDL.SUCCINCTCHECK:

hj(X) :=
lg(n)∏
i=0

(1 + ξlg(n)−i ·X2i

) ∈ Fq[X]

We don’t mention the previous accumulator acci−1 explicitly as it’s treated as an instance in the
protocol. We also only consider the case where the protocol does not have zero knowledge, meaning

20

that we omit the blue parts of the protocol. The ASDL.VERIFIER shows that C is a commitment
to h(X) in the sense that it’s a linear combination of all hj(X)’s from the previous instances, by
running the same ASDL.COMMONSUBROUTINE algorithm as the prover to get the same output. Note
that the ASDL.VERIFIER does not guarantee that C is a valid commitment to h(X) in the sense that
C = PCDL.COMMIT(h, d,⊥), that’s the ASDL.DECIDER’s job. Since ASDL.VERIFIER does not verify
that each Uj is valid, and therefore that C = PCDL.COMMIT(h, d,⊥), we now wish to argue that
ASDL.DECIDER verifies this for all the instances.

Showing that C = PCDL.COMMIT(h, d,⊥):

The ASDL.PROVER has a list of instances (q1, . . . , qm) = qi, then runs PCDL.SUCCINCTCHECK on each
of them, getting (U1, . . . , Um) and (h1(X), . . . , hm(X)). For each element Uj in the vector U ∈ E(Fq)m

and each element hj(X) in the vector h ∈ (F≤d
q [X])m, the ASDL.PROVER defines:

h(X) :=
m∑

j=1
αjhj(X)

C :=
m∑

j=1
αjUj

Since we know from the ASDL.VERIFIER:

1. PCDL.SUCCINCTCHECK(qj) = ⊤

2. Cacci =
∑m

j=1 αjUj

3. zacci
= ρ1(C, h(X))

4. hacci
(X) =

∑m
j=0 αjhj(X)

5. α := ρ1(h, U)

Which implies that ΦAS(qj) = ⊤ if U = G(0). We then argue that when the ASDL.DECIDER checks
that C = PCDL.COMMIT(h(X), d,⊥), then that implies that each Uj is a valid commitment to hj(X),
Uj = PCDL.COMMIT(hj(X), d,⊥) = ⟨G, hj⟩, thereby performing the second check of PCDL.CHECK, on
all qj instances at once. We know that:

1. PCDL.CHECK tells us that Cacci
=

∑m
j=1 αjUj except with negligible probability, since,

2. The binding property of CM states that it’s hard to find a different C ′, s.t., C = C ′ but hacci(X) ̸=
h′(X). Which means that hacci

(X) = h′(X).

3. Define Bj = ⟨G, hj
(coeffs)⟩. If ∃j ∈ [m] Bj ≠ Uj then Uj is not a valid commitment to hj(X) and∑m

j=1 αjBj ̸=
∑m

j=1 αjUj . As such Cacci
will not be a valid commitment to hacci

(X). Unless,

4. α := ρ1(h, U) or z = ρ1(C, h(X)) is constructed in a malicious way, which is hard, since they’re
from the random oracle.

To sum up, this means that running the ASDL.DECIDER corresponds to checking all Uj ’s.

What about checking the previous instances, qi−1, accumulated into the previous accumu-
lator, acci−1? The accumulator for qi−1 is represented by an instance acci−1 = (C =
PCDL.COMMIT(hacci−1 , d,⊥), d, z, v = hacci−1(z), π), which, as mentioned, behaves like all other
instances in the protocol and represents a PCS opening to hacci−1(X). Since acci−1 is represented as an
instance, and we showed that as long as each instance is checked by AS.VERIFIER (which acci−1 also is),
running PCDL.CHECK(acci) on the corresponding accumulation polynomial hacci(X) is equivalent to
performing the second check Uj = PCDL.COMMIT(hj(X), d,⊥) on all the hj(X) that hacci

(X) consists of.
Intuitively, if any of the previous accumulators were invalid, then their commitment will be invalid, and
the next accumulator will also be invalid. That is, the error will propagate. Therefore, we will also check
the previous set of instances qi−1, and by induction, all accumulated instances q and accumulators acc.

21

Completeness
ASDL.VERIFIER runs the same algorithm (ASDL.COMMONSUBROUTINE) with the same inputs and, given that
ASDL.PROVER is honest, will therefore get the same outputs, these outputs are checked to be equal to the ones
received from the prover. Since these were generated honestly by the prover, also using ASDL.COMMONSUBROUTINE,
the ASDL.VERIFIER will accept with probability 1, returning ⊤. Intuitively, this also makes sense. It’s the job of the
verifier to verify that each instance is accumulated correctly into the accumulator. This verifier does the same work
as the prover and checks that the output matches.

As for the ASDL.DECIDER, it just runs PCDL.CHECK on the provided accumulator, which represents a evaluation
proof i.e. an instance. This check will always pass, as the prover constructed it honestly.

Soundness
In order to prove soundness, we first need a helper lemma:

Lemma: Zero-Finding Game:

Let CM = (CM.SETUP, CM.COMMIT) be a perfectly binding commitment scheme. Fix a maximum degree D ∈ N
and a random oracle ρ that takes commitments from CM to Fpp. Then for every family of functions {fpp}pp and
fields {Fpp}pp where:

• fpp ∈M→ F ≤D
pp [X]

• F ∈ N→ N
• |Fpp| ≥ F (λ)

That is, for all functions, fpp, that takes a message,M as input and outputs a maximum D-degree polynomial. Also,
usually |Fpp| ≈ F (λ). For every message format L and computationally unbounded t-query oracle algorithm A, the
following holds:

Pr


p ̸= 0
∧

p(z) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppCM ← CM.SETUP(1λ, L)

(m, ω)← Aρ(ppCM)
C ← CM.COMMIT(m, ω)

z ∈ Fpp ← ρ(C)
p := fpp(m)

 ≤
√

D(t + 1)
F (λ)

Intuitively, the above lemma states that for any non-zero polynomial p, that you can create using the commitment
C, it will be highly improbable that a random evaluation point z be a root of the polynomial p, p(z) = 0. For
reference, this is not too unlike the Schwartz-Zippel Lemma.

Proof:

We construct a reduction proof, showing that if an adversary A that wins with probability δ in the above game,
then we construct an adversary B which breaks the binding of the commitment scheme with probability at least:

δ2

t + 1 −
D

F (λ)
Thus, leading to a contradiction, since CM is perfectly binding. Note, that we may assume that A always queries
C ← CM.COMMIT(m, ω) for its output (m, ω), by increasing the query bound from t to t + 1.

The Adversary B(ppCM)
1: Run (m, ω)← Aρ(ppCM), simulating its queries to ρ.
2: Get C ← CM.COMMIT(m, ω).
3: Rewind A to the query ρ(C) and run to the end, drawing fresh randomness for this and subsequent oracle

queries, to obtain (p′, ω′).
4: Output ((m, ω), (m′, ω′)).

Each (m, ω)-pair represents a message where p ̸= 0 ∧ p(z) = 0 for z = ρ(CM.COMMIT(m, ω)) and p = fpp(m) with
probability δ

22

Let:
C ′ := CM.COMMIT(p′, ω′)
z := ρ(C)

z′ := ρ(C ′)
p := fpp(m)

p′ := fpp(m′)

By the Local Forking Lemma[Bellare et al. 2019], the probability that p(z) = p′(z′) = 0 and C = C ′ is at least δ2

t+1 .
Let’s call this event E:

E := (p(z) = p′(z′) = 0 ∧ C = C ′)
Then, by the triangle argument:

Pr[E] ≤ Pr[E ∧ (p = p′)] + Pr[E ∧ (p ̸= p′)]

And, by Schwartz-Zippel:
Pr[E ∧ (p = p′)] ≤ D

|Fpp|
=⇒

≤ D

F (λ)
Thus, the probability that B breaks binding is:

Pr[E ∧ (p = p′)] + Pr[E ∧ (p ̸= p′)] ≥ Pr[E]
Pr[E ∧ (p ̸= p′)] ≥ Pr[E]− Pr[E ∧ (p = p′)]

Pr[E ∧ (p ̸= p′)] ≥ δ2

t + 1 −
D

F (λ)

Yielding us the desired probability bound. Isolating δ will give us the probability bound for the zero-finding game:

0 = δ2

t + 1 −
D

F (λ)
δ2

t + 1 = D

F (λ)

δ2 = D(t + 1)
F (λ)

δ =

√
D(t + 1)

F (λ)

□

For the above Lemma to hold, the algorithms of CM must not have access to the random oracle ρ used to generate
the challenge point z, but CM may use other oracles. The lemma still holds even when A has access to the additional
oracles. This is a concrete reason why domain separation, as mentioned in the Fiat-Shamir subsection, is important.

With this lemma, we wish to show that given an adversary A, that breaks the soundness property of ASDL, we
can create a reduction proof that then breaks the above zero-finding game. We fix A, D = poly(λ) from the AS
soundness definition:

Pr


ASDL.VERIFIERρ1((qacci−1 ++ q), acci) = ⊤,

ASDL.DECIDERρ1(acci) = ⊤
∧

∃i ∈ [n] : ΦAS(qi) = ⊥

ρ0 ← U(λ), ρ1 ← U(λ),
ppPC ← PCDL.SETUPρ0(1λ, D),
ppAS ← ASDL.SETUPρ1(1λ, ppPC),

(q, acci−1, acci)← Aρ1(ppAS, ppPC)
qacci−1 ← TOINSTANCE(acci−1)

 ≤ negl(λ)

We call the probability that the adversary A wins the above game δ. We bound δ by constructing two adversaries,
B1,B2, for the zero-finding game. Assuming:

23

• Pr[B1 wins ∨ B2wins] = δ − negl(λ)
• Pr[B1 wins ∨ B2wins] = 0

These assumptions will be proved after defining the adversaries concretely. So, we claim that the probability that
either of the adversaries wins is δ − negl(λ) and that both of the adversaries cannot win the game at the same time.
With these assumptions, we can bound δ:

Pr[B1 wins ∨ B2 wins] = Pr[B1 wins] + Pr[B2 wins]− Pr[B1 wins ∧ B2 wins]
Pr[B1 wins ∨ B2 wins] = Pr[B1 wins] + Pr[B2 wins]− 0

δ − negl(λ) ≤

√
D(t + 1)

F (λ) +

√
D(t + 1)

F (λ)

δ − negl(λ) ≤ 2 ·

√
D(t + 1)
|Fq|

δ ≤ 2 ·

√
D(t + 1)
|Fq|

+ negl(λ)

Meaning that δ is negligible, since q = |Fq| is superpolynomial in λ. We define two perfectly binding commitment
schemes to be used for the zero-finding game:

• CM1:
– CM1.SETUPρ0(1λ, D) := ppPC ← PCDL.SETUPρ0(1λ, D)
– CM1.COMMIT((p(X), h(X)), _) := (C ← PCDL.COMMIT(p(X), d,⊥), h)
– MCM1 := {(p(X), h(X) = αjhj(X))} ∈ P((F≤D

q [X])2)
– zCM1 := ρ1(CM1.COMMIT((p(X), h(X)), _)) = ρ1((C ← PCDL.COMMIT(p(X), d,⊥), h)) = zacc

• CM2:
– CM2.SETUPρ0(1λ, D) := ppPC ← PCDL.SETUPρ0(1λ, D)
– CM2.COMMIT([(hj(X), Uj)]m, _) := [(hj(X), Uj)]m:
– MCM2 := {[(hj(X), Uj)]m} ∈ P((F≤D

q [X]× E(Fq))m)
– zCM2 := ρ1(CM2.COMMIT([(hj(X), Uj)]m, _)) = ρ1([(hj(X), Uj)]m) = α

Note that the CM1, CM2 above are perfectly binding, since they either return a Pedersen commitment, without
binding, or simply return their input. MCM1 consists of pairs of polynomials of a maximum degree D, where
∀j ∈ [m] : h(X) = αjhj(X). MCM2 consists of a list of pairs of a maximum degree D polynomial, hj(X), and Uj is
a group element. Notice that za = zacc and zb = α where zacc and α are from the ASDL protocol.

We define the corresponding functions f
(1)
pp , f

(2)
pp for CM1, CM2 below:

• f
(1)
pp (p(X), h(X) = [hj(X)]m) := a(X) = p(X)−

∑m
j=1 αjhj(X),

• f
(2)
pp (p = [(hj(X), Uj)]m) := b(Z) =

∑m
j=1 ajZj where for each j ∈ [m]:

– Bj ← PCDL.COMMIT(hj , d,⊥)
– Compute bj : bjG = Uj −Bj

We then construct an intermediate adversary, C, against PCDL, using A:

The Adversary Cρ1(ppPC)
1: Parse ppPC to get the security parameter 1λ and set AS public parameters ppAS := 1λ.
2: Compute (q, acci−1, acci)← Aρ1(ppAS).
3: Parse ppPC to get the degree bound D.
4: Output (D, acci = (Cacc, dacc, zacc, vacc), q).

The above adversary also outputs q for convenience, but the knowledge extractor simply ignores this. Running the
knowledge extractor, Eρ1

C , on C, meaning we extract acci, will give us p. Provided that ASDL.DECIDER accepts, the
following will hold with probability (1− negl):

• Cacc is a deterministic commitment to p(X).
• p(zacc) = vacc

24

• deg(p) ≤ dacc ≤ D

Let’s denote successful knowledge extraction s.t. the above points holds as EE . Furthermore, the ASDL.DECIDER
(and ASDL.VERIFIER’s) will accept with probability δ, s.t. the following holds:

• ASDL.VERIFIERρ1((qacci−1 ++ q), acci) = ⊤
• ASDL.DECIDERρ1(acci) = ⊤
• ∃i ∈ [n] : ΦAS(qi) = ⊥ =⇒ PCDL.CHECKρ0(Ci, di, zi, vi, πi) = ⊥

Let’s denote this event as ED. We’re interested in the probability Pr[EE ∧ ED]. Using the chain rule we get:

Pr[EE ∧ ED] = Pr[EE | ED] · Pr[EE]
= δ · (1− negl(λ))
= δ − δ · negl(λ)
= δ − negl(λ)

Now, since ASDL.VERIFIERρ1((qacci−1 ++ q), acci) accepts, then, by construction, all the following holds:

1. For each j ∈ [m], PCDL.SUCCINCTCHECK accepts.
2. Parsing acci = (Cacc, dacc, zacc, vacc) and setting α := ρ1([(hj(X), Uj)]m), we have that:

• zacc = ρ1(Cacc, [hj(X)]m)
• Cacc =

∑m
j=1 αjUj

• vacc =
∑m

j=1 αjhj(z)

Also by construction, this implies that either:

• PCDL.SUCCINCTCHECK rejects, which we showed above is not the case, so therefore,
• The group element Uj is not a commitment to hj(X).

We utilize this fact in the next two adversaries, B1,B2, constructed, to win the zero-finding game for CM1, CM2
respectively, with non-negligible probability:

The Adversary Bρ1
k (ppAS)

1: Compute (D, acci, q)← Cρ1(ppAS).
2: Compute p← Eρ

C(ppAS).
3: For each qj ∈ q : (hj , Uj)← PCDL.SUCCINCTCHECK(qj).
4: Compute α := ρ1([(hj , Uj)]m).
5: if k = 1 then
6: Output ((n, D), (p, h := ([hj]m)))
7: else if k = 2 then
8: Output ((n, D), ([(hj , Uj)]m))
9: end if

Remember, the goal is to find an evaluation point, s.t. a(X) ̸= 0 ∧ a(za) = 0 for CM1 and b(X) ̸= 0 ∧ b(zb) = 0 for
CM2. We set za = zacc and zb = α. Now, there are then two cases:

1. Cacc ̸=
∑m

j=1 αjBj : This means that for some j ∈ [m], Uj ̸= Bj . Since Cacc is a commitment to p(X),
p(X)−h(X) is not identically zero, but p(zacc) = h(zacc). Thusly, a(X) ̸= 0 and a(zacc) = 0. Because zacc = za

is sampled using the random oracle ρ1, B1 wins the zero-finding game against (CM1, {f (1)
pp }pp).

2. C =
∑n

j=1 αjBj . Which means that for all j ∈ [m], Uj = Bj . Since C =
∑n

j=1 αjUj , α is a root of the
polynomial a(Z), a(α) = 0. Because α is sampled using the random oracle ρ1, B2 wins the zero-finding game
against (CM2, {f (2)

pp }pp).

So, since one of these adversaries always win if EE ∧ ED, the probability that Pr[B1 wins ∨ B2wins] is indeed
δ − negl(λ). And since the above cases are mutually exclusive we also have Pr[B1 wins ∨ B2wins]. Thus, we have
proved that, given the zero-finding game Lemma, the probability that an adversary can break the soundness property
of the ASDL accumulation scheme is negligible.

□

25

Efficiency
• ASDL.COMMONSUBROUTINE:

– Step 6: m calls to PCDL.SUCCINCTCHECK, m · O(2 lg(d)) = O(2m lg(d)) scalar multiplications.
– Step 11: m scalar multiplications.

Step 6 dominates with O(2m lg(d)) = O(m lg(d)) scalar multiplications.
• ASDL.PROVER:

– Step 4: 1 call to ASDL.COMMONSUBROUTINE, O(md) scalar multiplications.
– Step 5: 1 evaluation of h(X), O(lg(d)) scalar multiplications.
– Step 6: 1 call to PCDL.OPEN, O(3d) scalar multiplications.

Step 6 dominates with O(3d) = O(d) scalar multiplications.
• ASDL.VERIFIER:

– Step 2: 1 call to ASDL.COMMONSUBROUTINE, O(2m lg(d)) scalar multiplications.
So O(2m lg(d)) = O(m lg(d)) scalar multiplications.

• ASDL.DECIDER:
– Step 2: 1 call to PCDL.CHECK, with O(d) scalar multiplications.

O(d) scalar multiplications.

So ASDL.PROVER and ASDL.DECIDER are linear and ASDL.DECIDER is sub-linear.

Benchmarks
Each benchmark is run using two helper functions, one for generating the benchmark data, and one used for checking
the accumulators.

1 pub fn acc_cmp_s_512_10(c: &mut Criterion) {
2 let (_, _, accs) = acc_compare(512, 10);
3 c.bench_function("acc_cmp_s_512_10", |b| {
4 b.iter(|| acc_compare_slow_helper(accs.clone()).unwrap())
5 });
6 }
7

8 pub fn acc_cmp_f_512_10(c: &mut Criterion) {
9 let (d, qss, accs) = acc_compare(512, 10);

10 c.bench_function("acc_cmp_f_512_10", |b| {
11 b.iter(|| acc_compare_fast_helper(d, &qss, accs.clone()).unwrap())
12 });
13 }

In the code below, acc_compare, is the function that creates the data required to run the tests. The function
acc_compare_fast_helper runs AS.VERIFIER on all instances and accumulators, and finally runs the decider once on
the final accumulator, meaning that all instances are verified. The other helper function acc_compare_slow_helper
naively runs the decider on all instances, which also checks all instances, but is a lot slower, as can also be seen in
the benchmarks.

1 fn acc_compare(n: usize, k: usize) -> (usize, Vec<Vec<Instance>>, Vec<Accumulator>) {
2 let mut rng = test_rng();
3 let d = n - 1;
4 let mut accs = Vec::with_capacity(k);
5 let mut qss = Vec::with_capacity(k);
6

7 let mut acc: Option<Accumulator> = None;
8

9 for _ in 0..k {
10 let q = random_instance(&mut rng, d);
11 let qs = if let Some(acc) = acc {
12 vec![acc.into(), q]
13 } else {

26

14 vec![q]
15 };
16

17 acc = Some(acc::prover(&mut rng, d, &qs).unwrap());
18

19 accs.push(acc.as_ref().unwrap().clone());
20 qss.push(qs);
21 }
22 (d, qss, accs)
23 }
24

25 fn acc_compare_fast_helper(
26 d: usize,
27 qss: &[Vec<Instance>],
28 accs: Vec<Accumulator>
29) -> Result<()> {
30 let last_acc = accs.last().unwrap().clone();
31

32 for (acc, qs) in accs.into_iter().zip(qss) {
33 acc::verifier(d, qs, acc)?;
34 }
35

36 acc::decider(last_acc)?;
37

38 Ok(())
39 }
40

41 fn acc_compare_slow_helper(accs: Vec<Accumulator>) -> Result<()> {
42 for acc in accs.into_iter() {
43 acc::decider(acc)?;
44 }
45

46 Ok(())
47 }

The results of the benchmarks, can be seen in the subsequent graphs:

27

512 1024 2048 4096 8196 16384
0

500

1,000

1,500

The maximum degree bound d, plus 1

T
im

e
(m

s)

Benchmark Times for 10 Iterations

acc_cmp_s
acc_cmp_f

512 1024 2048 4096 8196 16384
0

5

10

15

The maximum degree bound d, plus 1

T
im

e
(s

)

Benchmark Times for 100 Iterations

acc_cmp_s
acc_cmp_f

512 1024 2048 4096 8196 16384
0

50

100

150

The maximum degree bound d, plus 1

T
im

e
(s

)

Benchmark Times for 1000 Iterations

acc_cmp_s
acc_cmp_f

Unsurprisingly, increasing the number of iterations only changes the performance difference up to a certain point,
as the difference between running the decider gets amortized away as the number of iterations approaches infinity.
Also, as was hoped for in the beginning of the project, the performance of the two approaches show the expected
theoretical runtimes. The G is represented as a constant in the code, as such, increasing the length of G significantly
above 16,384 leads to slow compilation and failing LSP’s. If not for this fact, testing higher degrees would have been
preferred. The solution is to generate a much larger G at compile-time, including it in the binary, and reading it as
efficiently as possible during runtime, but this was not done due to time constraints.

28

Appendix
Notation

[n] Denotes the integers {1, ..., n}
a ∈ Fq A field element in a prime field of order q
a ∈ Sn

q A vector of length n consisting of elements from set S
G ∈ E(Fq) An elliptic Curve point, defined over field Fq

(a1, . . . , an) = [xi]n = [xi]ni=1 = a ∈ Sn
q A vector of length n

v(0) The singular element of a fully compressed vector vlg(n) from
PCDL.OPEN.

p(coeffs) The coefficient vector of p.
a ∈R S a is a uniformly randomly sampled element of S
(S1, . . . , Sn) In the context of sets, the same as S1 × · · · × Sn

⟨a, G⟩ where a ∈ Fn
q , G ∈ En(Fq) The dot product of a and G (

∑n
i=0 aiGi).

⟨a, b⟩ where a ∈ Fn
q , b ∈ Fn

q The dot product of vectors a and b.
l(a) Gets the left half of a.
r(a) Gets the right half of a.
a ++ b where a ∈ Fn

q , b ∈ Fm
q Concatenate vectors to create c ∈ Fn+m

q .
a ++ b where a ∈ Fq Create vector c = (a, b).
I.K w “I Know”, Used in the context of proof claims, meaning I have

knowledge of the witness w
Option(T) {T,⊥}
Result(T, E) {T, E}
EvalProof (Elg(n)(Fq),Elg(n)(Fq),E(Fq),Fq,E(Fq),Fq)
AccHiding (E(Fq),N,Fq,Fd

q)
Acc ((E(Fq),N,Fq,Fq, EvalProof), AccHiding)

Note that the following are isomorphic {⊤,⊥} ∼= Option(⊤) ∼= Result(⊤,⊥), but they have different connotations.
Generally for this report, Option(T) models optional arguments, where ⊥ indicates an empty argument and
Result(T,⊥) models the result of a computation that may fail, particularly used for rejecting verifiers.

Raw Benchmarking Data
The raw benchmarking data provided by Criterion.

acc_cmp_s_512_10 time: [94.245 ms 94.834 ms 95.584 ms]
acc_cmp_s_1024_10 time: [150.47 ms 151.25 ms 152.39 ms]
acc_cmp_s_2048_10 time: [257.25 ms 258.92 ms 261.14 ms]
acc_cmp_s_4096_10 time: [451.60 ms 453.55 ms 456.18 ms]
acc_cmp_s_8196_10 time: [833.82 ms 838.05 ms 843.10 ms]
acc_cmp_s_16384_10 time: [1.5172 s 1.5227 s 1.5292 s]
acc_cmp_f_512_10 time: [66.989 ms 67.098 ms 67.220 ms]
acc_cmp_f_1024_10 time: [77.033 ms 77.597 ms 78.330 ms]
acc_cmp_f_2048_10 time: [99.415 ms 99.973 ms 100.68 ms]
acc_cmp_f_4096_10 time: [138.50 ms 139.35 ms 140.44 ms]
acc_cmp_f_8196_10 time: [185.41 ms 186.34 ms 187.59 ms]
acc_cmp_f_16384_10 time: [297.72 ms 299.49 ms 301.88 ms]
acc_cmp_s_512_100 time: [937.12 ms 940.91 ms 945.67 ms]
acc_cmp_s_1024_100 time: [1.4986 s 1.5042 s 1.5107 s]
acc_cmp_s_2048_100 time: [2.5490 s 2.5579 s 2.5681 s]
acc_cmp_s_4096_100 time: [4.4822 s 4.4945 s 4.5077 s]
acc_cmp_s_8196_100 time: [8.2672 s 8.3723 s 8.5111 s]
acc_cmp_s_16384_100 time: [15.240 s 15.253 s 15.271 s]
acc_cmp_f_512_100 time: [604.98 ms 607.28 ms 610.61 ms]
acc_cmp_f_1024_100 time: [658.74 ms 662.03 ms 666.03 ms]

29

acc_cmp_f_2048_100 time: [795.23 ms 798.48 ms 802.54 ms]
acc_cmp_f_4096_100 time: [1.0099 s 1.0142 s 1.0194 s]
acc_cmp_f_8196_100 time: [1.1559 s 1.1611 s 1.1671 s]
acc_cmp_f_16384_100 time: [1.6414 s 1.6484 s 1.6564 s]
acc_cmp_s_512_1000 time: [9.4209 s 9.4381 s 9.4555 s]
acc_cmp_s_1024_1000 time: [15.059 s 15.087 s 15.135 s]
acc_cmp_s_2048_1000 time: [25.604 s 25.621 s 25.638 s]
acc_cmp_s_4096_1000 time: [44.951 s 44.970 s 44.990 s]
acc_cmp_s_8196_1000 time: [82.605 s 82.643 s 82.697 s]
acc_cmp_s_16384_1000 time: [152.43 s 152.63 s 152.93 s]
acc_cmp_f_512_1000 time: [6.0046 s 6.0183 s 6.0325 s]
acc_cmp_f_1024_1000 time: [6.4971 s 6.5114 s 6.5262 s]
acc_cmp_f_2048_1000 time: [7.7599 s 7.7752 s 7.7906 s]
acc_cmp_f_4096_1000 time: [9.7686 s 9.7851 s 9.8022 s]
acc_cmp_f_8196_1000 time: [10.887 s 10.899 s 10.910 s]
acc_cmp_f_16384_1000 time: [15.166 s 15.176 s 15.186 s]

CM: Pedersen Commitment
As a reference, the Pedersen Commitment algorithm used is included:

Algorithm 9 CM.COMMIT

Inputs
m : Fn The vectors we wish to commit to.
G : E(F)n The generators we use to create the commitment. From pp.
ω : Option(Fq) Optional hiding factor for the commitment.

Output
C : E(Fq) The Pedersen commitment.

1: Output C := ⟨m, G⟩+ ωS.

And the corresponding setup algorithm:

Algorithm 10 CM.SETUPρ0

Inputs
λ : N The security parameter, in unary form.
L : N The message format, representing the maximum size vector that can be

committed to.
Output

ppCM The public parameters to be used in CM.COMMIT

1: (E(Fq), q, G)← SampleGroupρ0(1λ)
2: Choose independently uniformly-sampled generators in E(Fq), G ∈R E(Fq)L, S ∈R E(Fq) using ρ0.
3: Output ppCM = ((E(Fq), q, G), G, S)

30

References
Attema, T., Fehr, S., and Klooß, M. 2023. Fiat–shamir transformation of multi-round interactive proofs

(extended version). https://doi.org/10.1007/s00145-023-09478-y.

Bellare, M., Dai, W., and Li, L. 2019. The local forking lemma and its application to deterministic encryption.
https://eprint.iacr.org/2019/1017.

Bowe, S., Grigg, J., and Hopwood, D. 2019. Recursive proof composition without a trusted setup. https:
//eprint.iacr.org/2019/1021.

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G. 2017. Bulletproofs: Short
proofs for confidential transactions and more. https://eprint.iacr.org/2017/1066.

Bünz, B., Chiesa, A., Mishra, P., and Spooner, N. 2020. Proof-carrying data from accumulation schemes.
https://eprint.iacr.org/2020/499.

Bünz, B., Maller, M., Mishra, P., Tyagi, N., and Vesely, P. 2019. Proofs for inner pairing products and
applications. https://eprint.iacr.org/2019/1177.

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., and Ward, N. 2019. Marlin: Preprocessing
zkSNARKs with universal and updatable SRS. https://eprint.iacr.org/2019/1047.

Gabizon, A., Williamson, Z.J., and Ciobotaru, O. 2019. PLONK: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. https://eprint.iacr.org/2019/953.

Gibson, A. 2022. From zero (knowledge) to bulletproofs. https://github.com/AdamISZ/from0k2bp/blob/8f423712
b685246a6be264b7c8081c408e957e67/from0k2bp.pdf (Accessed: 2025-01-29).

Jakobsen, R.K. 2025. The project repository. https://github.com/rasmus-kirk/halo-accumulation (Accessed:
2025-01-29).

Jakobsen, R.K. and Larsen, A.W. 2022. High assurance cryptography: Implementing bulletproofs in hacspec.
https://rasmuskirk.com/documents/high-assurance-cryptography-implementing-bulletproofs-in-hacspec.pdf
(Accessed: 2025-01-29).

Kate, A., Zaverucha, G.M., and Goldberg, I. 2010. Constant-size commitments to polynomials and their
applications. Advances in cryptology - ASIACRYPT 2010 - 16th international conference on the theory and
application of cryptology and information security, Springer, 177–194.

Maller, M., Bowe, S., Kohlweiss, M., and Meiklejohn, S. 2019. Sonic: Zero-knowledge SNARKs from
linear-size universal and updateable structured reference strings. https://eprint.iacr.org/2019/099.

The mina blockchain. 2025. https://minaprotocol.com/ (Accessed: 2025-01-29).

Valence, H. de, Yun, C., and Oleg Andreev, and. 2023. Inner product proof. https://doc-internal.dalek.rs/
develop/bulletproofs/notes/inner_product_proof/ (Accessed: 2025-01-29).

Valiant, P. 2008. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. Theory
of cryptography, Springer Berlin Heidelberg, 1–18.

31

https://doi.org/10.1007/s00145-023-09478-y
https://eprint.iacr.org/2019/1017
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/953
https://github.com/AdamISZ/from0k2bp/blob/8f423712b685246a6be264b7c8081c408e957e67/from0k2bp.pdf
https://github.com/AdamISZ/from0k2bp/blob/8f423712b685246a6be264b7c8081c408e957e67/from0k2bp.pdf
https://github.com/rasmus-kirk/halo-accumulation
https://rasmuskirk.com/documents/high-assurance-cryptography-implementing-bulletproofs-in-hacspec.pdf
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/099
https://minaprotocol.com/
https://doc-internal.dalek.rs/develop/bulletproofs/notes/inner_product_proof/
https://doc-internal.dalek.rs/develop/bulletproofs/notes/inner_product_proof/

	Introduction
	Prerequisites
	Background and Motivation
	Proof Systems
	Incrementally Verifiable Computation
	Polynomial Commitment Schemes
	Accumulation Schemes
	IVC from Accumulation Schemes

	The Implementation

	\PCDL: The Polynomial Commitment Scheme
	Outline
	\PCDLCommit
	\PCDLOpen
	\PCDLSuccinctCheck
	\PCDLCheck

	Completeness
	Knowledge Soundness
	Efficiency

	\ASDL: The Accumulation Scheme
	Outline
	\ASDLCommonSubroutine
	\ASDLProver
	\ASDLVerifier
	\ASDLDecider

	Completeness
	Soundness
	Efficiency

	Benchmarks
	Appendix
	Notation
	Raw Benchmarking Data
	\mathrm{CM}: Pedersen Commitment

	References

